Review
BibTex RIS Cite

GAZ MOTORLU ISI POMPASI SİSTEMLERİNİN ÖNCÜL ENERJİ ORANI DEĞERLERİNE İLİŞKİN BİR İNCELEME

Year 2024, , 196 - 221, 26.10.2024
https://doi.org/10.47933/ijeir.1547634

Abstract

Bu çalışmada, gaz motoru tahrikli ısı pompası sistemlerinin birincil enerji oranı değerleri incelenerek, gaz motoru tahrikli ısı pompası sistemleri kendi aralarında veya farklı enerji kaynakları kullanan ısı pompası sistemleriyle verimlilik değerleri açısından karşılaştırılmıştır. Gaz tahrikli ısı pompası sistemlerinin birincil enerji oranlarını inceleyen çalışmalara ilişkin kapsamlı bir literatür taraması sunulmuştur. Gaz tahrikli ısı pompası sistemleri üzerine yapılan çalışmalarda elde edilen birincil enerji oranları belirlenmiş ve tablolaştırılmıştır. Ayrıca bu sistemlerdeki atık ısı geri kazanım oranları da incelenmiştir. İlgili alanda yapılan çalışmalar deneysel ve teorik olarak gruplandırılmıştır. Ayrıca incelenen sistem yapıları arasındaki farklılıklar belirtilmiş ve birincil enerji oranları sunulmuştur. Isı geri kazanımı olan ve olmayan sistemlerin birincil enerji oranları incelenmiştir. Literatürde konu ile ilgili derleme çalışması bulunmamaktadır. Gaz tahrikli ısı pompalarının birincil enerji oranlarının hesaplanmasında kullanılan hesaplama metodolojisi ve elde edilen değerler sunulmuştur. Böylelikle incelenen sistemlerin enerji verimliliği ve çevresel değerlendirmeleri literatür ışığında sunulmuştur. Ayrıca literatürde yapılan çalışmalarda hangi soğutucu akışkanların kullanıldığı sunulmuştur. Alternatif ve sürdürülebilir soğutucu akışkanların seçimi konusunda öneriler sunulmaktadır.

References

  • [1] Y. A. Çengel, M. A. Boles, and A. Pınarbaşı, Termodinamik, Mühendislik Yaklaşımıyla, 5. Baskı. İzmir: İzmir Güven Kitabevi, 2008.
  • [2] C. Zamfirescu and I. Dincer, “Performance investigation of high-temperature heat pumps with various BZT working fluids,” Thermochimica Acta, vol. 488, no. 1–2, Art. no. 1–2, May 2009, doi: 10.1016/j.tca.2009.01.028.
  • [3] K. J. Chua, S. K. Chou, and W. M. Yang, “Advances in heat pump systems: A review,” Applied Energy, vol. 87, no. 12, Art. no. 12, Dec. 2010, doi: 10.1016/j.apenergy.2010.06.014.
  • [4] B. Yu, H. Ouyang, J. Shi, Z. Guo, and J. Chen, “Experimental evaluation of cycle performance for new-developed refrigerants in the electric vehicle heat pump systems,” International Journal of Refrigeration, vol. 129, pp. 118–127, Sep. 2021, doi: 10.1016/j.ijrefrig.2021.04.037.
  • [5] D. P. Zurmuhl et al., “Hybrid geothermal heat pumps for cooling telecommunications data centers,” Energy and Buildings, vol. 188–189, pp. 120–128, Apr. 2019, doi: 10.1016/j.enbuild.2019.01.042.
  • [6] A. Khouya, “Performance assessment of a heat pump and a concentrated photovoltaic thermal system during the wood drying process,” Applied Thermal Engineering, vol. 180, p. 115923, Nov. 2020, doi: 10.1016/j.applthermaleng.2020.115923.
  • [7] C. Tunckal and İ. Doymaz, “Performance analysis and mathematical modelling of banana slices in a heat pump drying system,” Renewable Energy, vol. 150, pp. 918–923, May 2020, doi: 10.1016/j.renene.2020.01.040.
  • [8] X. Cao, J. Zhang, Z.-Y. Li, L.-L. Shao, and C.-L. Zhang, “Process simulation and analysis of a closed-loop heat pump clothes dryer,” Applied Thermal Engineering, vol. 199, p. 117545, Nov. 2021, doi: 10.1016/j.applthermaleng.2021.117545.
  • [9] A. Khalifa, A. Mezghani, and H. Alawami, “Analysis of integrated membrane distillation-heat pump system for water desalination,” Desalination, vol. 510, p. 115087, Aug. 2021, doi: 10.1016/j.desal.2021.115087.
  • [10] X. Li, Z. Wang, M. Yang, Y. Bai, and G. Yuan, “Proposal and performance analysis of solar cogeneration system coupled with absorption heat pump,” Applied Thermal Engineering, vol. 159, p. 113873, Aug. 2019, doi: 10.1016/j.applthermaleng.2019.113873.
  • [11] A. M. Brockway and P. Delforge, “Emissions reduction potential from electric heat pumps in California homes,” The Electricity Journal, vol. 31, no. 9, pp. 44–53, Nov. 2018, doi: 10.1016/j.tej.2018.10.012.
  • [12] D. Wu, B. Hu, and R. Z. Wang, “Performance simulation and exergy analysis of a hybrid source heat pump system with low GWP refrigerants,” Renewable Energy, vol. 116, pp. 775–785, Feb. 2018, doi: 10.1016/j.renene.2017.10.024.
  • [13] C. Sáez Blázquez, D. Borge-Diez, I. Martín Nieto, A. Farfán Martín, and D. González-Aguilera, “Technical optimization of the energy supply in geothermal heat pumps,” Geothermics, vol. 81, pp. 133–142, Sep. 2019, doi: 10.1016/j.geothermics.2019.04.008.
  • [14] L.-L. Jia, R. Zhang, X. Zhang, Z.-X. Ma, and F.-G. Liu, “Experimental analysis of a novel gas-engine-driven heat pump (GEHP) system for combined cooling and hot-water supply,” International Journal of Refrigeration, vol. 118, pp. 84–92, Oct. 2020, doi: 10.1016/j.ijrefrig.2020.04.033.
  • [15] L. W. Yang et al., “Review of the advances in solar-assisted air source heat pumps for the domestic sector,” Energy Conversion and Management, vol. 247, p. 114710, Nov. 2021, doi: 10.1016/j.enconman.2021.114710.
  • [16] Z. Lian, S. Park, W. Huang, Y. Baik, and Y. Yao, “Conception of combination of gas-engine-driven heat pump and water-loop heat pump system,” International Journal of Refrigeration, vol. 28, no. 6, Art. no. 6, Sep. 2005, doi: 10.1016/j.ijrefrig.2005.02.004.
  • [17] A. Hepbasli, Z. Erbay, F. Icier, N. Colak, and E. Hancioglu, “A review of gas engine driven heat pumps (GEHPs) for residential and industrial applications,” Renewable and Sustainable Energy Reviews, vol. 13, no. 1, pp. 85–99, Jan. 2009, doi: 10.1016/j.rser.2007.06.014.
  • [18] Z. Tian, F. Liu, C. Tian, Z. Ma, L. Jia, and R. Zhang, “Experimental investigation on cooling performance and optimal superheat of water source gas engine-driven heat pump system,” Applied Thermal Engineering, vol. 178, p. 115494, Sep. 2020, doi: 10.1016/j.applthermaleng.2020.115494.
  • [19] S. Li, W. Zhang, R. Zhang, D. Lv, and Z. Huang, “Cascade fuzzy control for gas engine driven heat pump,” Energy Conversion and Management, vol. 46, no. 11–12, Art. no. 11–12, Jul. 2005, doi: 10.1016/j.enconman.2004.09.003.
  • [20] I. Dincer and M. A. Rosen, “Heat Pump Systems,” in Exergy Analysis of Heating, Refrigerating and Air Conditioning, Elsevier, 2015, pp. 131–168. doi: 10.1016/B978-0-12-417203-6.00004-1.
  • [21] R. Zhang, Z. Tian, F. Liu, C. Tian, Z. Ma, and L. Jia, “Research on waste heat recovery from gas engine for auxiliary heating: An emerging operation strategy to gas engine-driven heat pump,” International Journal of Refrigeration, vol. 121, pp. 206–215, Jan. 2021, doi: 10.1016/j.ijrefrig.2020.09.015.
  • [22] Z. Yang, H. Cheng, X. Wu, and Y. Chen, “Research on improving energy efficiency and the annual distributing structure in electricity and gas consumption by extending use of GEHP,” Energy Policy, vol. 39, no. 9, pp. 5192–5202, Sep. 2011, doi: 10.1016/j.enpol.2011.05.045.
  • [23] M. Wang, Y. Chen, and Q. Liu, “Experimental study on the gas engine speed control and heating performance of a gas Engine-driven heat pump,” Energy and Buildings, vol. 178, pp. 84–93, Nov. 2018, doi: 10.1016/j.enbuild.2018.08.041.
  • [24] A. Gungor, Z. Erbay, A. Hepbasli, and H. Gunerhan, “Splitting the exergy destruction into avoidable and unavoidable parts of a gas engine heat pump (GEHP) for food drying processes based on experimental values,” Energy Conversion and Management, vol. 73, pp. 309–316, Sep. 2013, doi: 10.1016/j.enconman.2013.04.033.
  • [25] J. Wu and Y. Ma, “Experimental study on performance of a biogas engine driven air source heat pump system powered by renewable landfill gas,” International Journal of Refrigeration, vol. 62, pp. 19–29, Feb. 2016, doi: 10.1016/j.ijrefrig.2015.08.023.
  • [26] B. Hu, C. Li, X. Yin, F. Cao, and P. Shu, “Thermal modeling and experimental research of a gas engine-driven heat pump in variable condition,” Applied Thermal Engineering, vol. 123, pp. 1504–1513, Aug. 2017, doi: 10.1016/j.applthermaleng.2017.05.189.
  • [27] E. Elgendy and J. Schmidt, “Experimental study of gas engine driven air to water heat pump in cooling mode,” Energy, vol. 35, no. 6, Art. no. 6, Jun. 2010, doi: 10.1016/j.energy.2010.02.040.
  • [28] S. Sanaye and H. Asgari, “Thermal modeling of gas engine driven air to water heat pump systems in heating mode using genetic algorithm and Artificial Neural Network methods,” International Journal of Refrigeration, vol. 36, no. 8, Art. no. 8, Dec. 2013, doi: 10.1016/j.ijrefrig.2013.06.014.
  • [29] E. Elgendy and J. Schmidt, “Optimum utilization of recovered heat of a gas engine heat pump used for water heating at low air temperature,” Energy and Buildings, vol. 80, pp. 375–383, Sep. 2014, doi: 10.1016/j.enbuild.2014.05.054.
  • [30] X. Wu, Z. Yang, H. Liu, Z. Huan, and W. Wang, “The Performance of Mixture Refrigerant R134a/R152a in a Novel Gas Engine-Driven Heat Pump System,” International Journal of Green Energy, vol. 11, no. 1, Art. no. 1, Jan. 2014, doi: 10.1080/15435075.2013.769877.
  • [31] H. Hao, L. Mao, G. Feng, and H. Wen, “Study on Simulation Performance of Solar Energy and Gas Heat Pump for Heating Supply,” Procedia Engineering, vol. 121, pp. 1482–1489, 2015, doi: 10.1016/j.proeng.2015.09.074.
  • [32] H. Liu, Q. Zhou, H. Zhao, and P. Wang, “Experiments and thermal modeling on hybrid energy supply system of gas engine heat pumps and organic Rankine cycle,” Energy and Buildings, vol. 87, pp. 226–232, Jan. 2015, doi: 10.1016/j.enbuild.2014.11.046.
  • [33] W. Jiang, L. Cai, J. Wang, W. Deng, and X. Zhang, “Simulation and validation of a hybrid-power gas engine heat pump,” International Journal of Refrigeration, vol. 50, pp. 114–126, Feb. 2015, doi: 10.1016/j.ijrefrig.2014.10.020.
  • [34] H. Liu, Q. Zhou, and H. Zhao, “Experimental study on cooling performance and energy saving of gas engine-driven heat pump system with evaporative condenser,” Energy Conversion and Management, vol. 123, pp. 200–208, Sep. 2016, doi: 10.1016/j.enconman.2016.06.044.
  • [35] X. Wan, L. Cai, J. Yan, X. Ma, T. Chen, and X. Zhang, “Power management strategy for a parallel hybrid-power gas engine heat pump system,” Applied Thermal Engineering, vol. 110, pp. 234–243, Jan. 2017, doi: 10.1016/j.applthermaleng.2016.07.138.
  • [36] F.-G. Liu, Z.-Y. Tian, F.-J. Dong, C. Yan, R. Zhang, and A.-B. Yan, “Experimental study on the performance of a gas engine heat pump for heating and domestic hot water,” Energy and Buildings, vol. 152, pp. 273–278, Oct. 2017, doi: 10.1016/j.enbuild.2017.07.051.
  • [37] F. Liu, F. Dong, A. Yan, Y. Li, C. Yan, and J. Li, “Heating performance of a parallel gas engine compression-absorption heat pump,” Applied Thermal Engineering, vol. 123, pp. 1308–1317, Aug. 2017, doi: 10.1016/j.applthermaleng.2017.05.049.
  • [38] Z. Qiang and Y. Zhao, “The Research on Operating Characteristic of Gas Engine Heat Pump System with Energy Storage (ESGEHP) System,” Energy Procedia, vol. 142, pp. 1213–1221, Dec. 2017, doi: 10.1016/j.egypro.2017.12.509.
  • [39] Q. Zhang, Z. Yang, and Y.-D. Gao, “The multi-goal optimal analysis of stand-alone gas engine heat pump system with energy storage (ESGEHP) system,” Energy and Buildings, vol. 139, pp. 525–534, Mar. 2017, doi: 10.1016/j.enbuild.2017.01.039.
  • [40] F.-G. Liu, Z.-Y. Tian, F.-J. Dong, G.-Z. Cao, R. Zhang, and A.-B. Yan, “Experimental investigation of a gas engine-driven heat pump system for cooling and heating operation,” International Journal of Refrigeration, vol. 86, pp. 196–202, Feb. 2018, doi: 10.1016/j.ijrefrig.2017.10.034.
  • [41] F. Liu, F. Dong, Y. Li, and L. Jia, “Study on the heating performance and optimal intermediate temperature of a series gas engine compression-absorption heat pump system,” Applied Thermal Engineering, vol. 135, pp. 34–40, May 2018, doi: 10.1016/j.applthermaleng.2018.02.010.
  • [42] Q. Zhang, Z. Yang, N. Li, R. Feng, and Y. Gao, “The influence of building using function on the operating characteristics of the gas engine driven heat pump with energy storage system (ESGEHPs),” Energy and Buildings, vol. 167, pp. 136–151, May 2018, doi: 10.1016/j.enbuild.2018.02.039.
  • [43] X. Ma, L. Cai, Q. Meng, T. Chen, and X. Zhang, “Dynamic optimal control and economic analysis of a coaxial parallel-type hybrid power gas engine-driven heat pump,” Applied Thermal Engineering, vol. 131, pp. 607–620, Feb. 2018, doi: 10.1016/j.applthermaleng.2017.12.011.
  • [44] W. Zhang, X. Yang, T. Wang, X. Peng, and X. Wang, “Experimental Study of a Gas Engine-driven Heat Pump System for Space Heating and Cooling,” Civ Eng J, vol. 5, no. 10, Art. no. 10, Oct. 2019, doi: 10.28991/cej-2019-03091411.
  • [45] Z. Ma, F. Liu, C. Tian, L. Jia, and W. Wu, “Experimental comparisons on a gas engine heat pump using R134a and low-GWP refrigerant R152a,” International Journal of Refrigeration, vol. 115, pp. 73–82, Jul. 2020, doi: 10.1016/j.ijrefrig.2020.03.007.
  • [46] R. Zhang, Z. Tian, F. Liu, C. Tian, Z. Ma, and L. Jia, “Research on waste heat recovery from gas engine for auxiliary heating: An emerging operation strategy to gas engine-driven heat pump,” International Journal of Refrigeration, vol. 121, pp. 206–215, Jan. 2021, doi: 10.1016/j.ijrefrig.2020.09.015.
  • [47] E. Elgendy and J. Schmidt, “Experimental study of gas engine driven air to water heat pump in cooling mode,” Energy, vol. 35, no. 6, pp. 2461–2467, Jun. 2010, doi: 10.1016/j.energy.2010.02.040.
  • [48] S. Sanaye, M. Chahartaghi, and H. Asgari, “Dynamic modeling of Gas Engine driven Heat Pump system in cooling mode,” Energy, vol. 55, pp. 195–208, Jun. 2013, doi: 10.1016/j.energy.2013.03.074.
  • [49] X. Wu, Z. Yang, H. Liu, Z. Huan, and W. Wang, “The Performance of Mixture Refrigerant R134a/R152a in a Novel Gas Engine-Driven Heat Pump System,” International Journal of Green Energy, vol. 11, no. 1, pp. 60–74, Jan. 2014, doi: 10.1080/15435075.2013.769877.
  • [50] H. Hao, L. Mao, G. Feng, and H. Wen, “Study on Simulation Performance of Solar Energy and Gas Heat Pump for Heating Supply,” Procedia Engineering, vol. 121, pp. 1482–1489, 2015, doi: 10.1016/j.proeng.2015.09.074.
  • [51] W. Jiang, L. Cai, J. Wang, W. Deng, and X. Zhang, “Simulation and validation of a hybrid-power gas engine heat pump,” International Journal of Refrigeration, vol. 50, pp. 114–126, Feb. 2015, doi: 10.1016/j.ijrefrig.2014.10.020.
  • [52] H. Liu, Q. Zhou, and H. Zhao, “Experimental study on cooling performance and energy saving of gas engine-driven heat pump system with evaporative condenser,” Energy Conversion and Management, vol. 123, pp. 200–208, Sep. 2016, doi: 10.1016/j.enconman.2016.06.044.
  • [53] X. Wan, L. Cai, J. Yan, X. Ma, T. Chen, and X. Zhang, “Power management strategy for a parallel hybrid-power gas engine heat pump system,” Applied Thermal Engineering, vol. 110, pp. 234–243, Jan. 2017, doi: 10.1016/j.applthermaleng.2016.07.138.
  • [54] F.-G. Liu, Z.-Y. Tian, F.-J. Dong, C. Yan, R. Zhang, and A.-B. Yan, “Experimental study on the performance of a gas engine heat pump for heating and domestic hot water,” Energy and Buildings, vol. 152, pp. 273–278, Oct. 2017, doi: 10.1016/j.enbuild.2017.07.051.
  • [55] Q. Zhang, Z. Yang, and Y.-D. Gao, “The multi-goal optimal analysis of stand-alone gas engine heat pump system with energy storage (ESGEHP) system,” Energy and Buildings, vol. 139, pp. 525–534, Mar. 2017, doi: 10.1016/j.enbuild.2017.01.039.
  • [56] Z. Qiang and Y. Zhao, “The Research on Operating Characteristic of Gas Engine Heat Pump System with Energy Storage (ESGEHP) System,” Energy Procedia, vol. 142, pp. 1213–1221, Dec. 2017, doi: 10.1016/j.egypro.2017.12.509.
  • [57] F. Liu, F. Dong, A. Yan, Y. Li, C. Yan, and J. Li, “Heating performance of a parallel gas engine compression-absorption heat pump,” Applied Thermal Engineering, vol. 123, pp. 1308–1317, Aug. 2017, doi: 10.1016/j.applthermaleng.2017.05.049.
  • [58] Q. Zhang, Z. Yang, N. Li, R. Feng, and Y. Gao, “The influence of building using function on the operating characteristics of the gas engine driven heat pump with energy storage system (ESGEHPs),” Energy and Buildings, vol. 167, pp. 136–151, May 2018, doi: 10.1016/j.enbuild.2018.02.039.
  • [59] F.-G. Liu, Z.-Y. Tian, F.-J. Dong, G.-Z. Cao, R. Zhang, and A.-B. Yan, “Experimental investigation of a gas engine-driven heat pump system for cooling and heating operation,” International Journal of Refrigeration, vol. 86, pp. 196–202, Feb. 2018, doi: 10.1016/j.ijrefrig.2017.10.034.
  • [60] F. Liu, F. Dong, Y. Li, and L. Jia, “Study on the heating performance and optimal intermediate temperature of a series gas engine compression-absorption heat pump system,” Applied Thermal Engineering, vol. 135, pp. 34–40, May 2018, doi: 10.1016/j.applthermaleng.2018.02.010.
  • [61] W. Zhang, X. Yang, T. Wang, X. Peng, and X. Wang, “Experimental Study of a Gas Engine-driven Heat Pump System for Space Heating and Cooling,” Civ Eng J, vol. 5, no. 10, pp. 2282–2295, Oct. 2019, doi: 10.28991/cej-2019-03091411.
  • [62] Z. Ma, F. Liu, C. Tian, L. Jia, and W. Wu, “Experimental comparisons on a gas engine heat pump using R134a and low-GWP refrigerant R152a,” International Journal of Refrigeration, vol. 115, pp. 73–82, Jul. 2020, doi: 10.1016/j.ijrefrig.2020.03.007.
  • [63] E. Elgendy, J. Schmidt, A. Khalil, and M. Fatouh, “Performance of a gas engine driven heat pump for hot water supply systems,” Energy, vol. 36, no. 5, Art. no. 5, May 2011, doi: 10.1016/j.energy.2011.02.030.
  • [64] W. Zhang, T. Wang, S. Zheng, X. Peng, and X. Wang, “Experimental Study of the Gas Engine Driven Heat Pump with Engine Heat Recovery,” Mathematical Problems in Engineering, vol. 2015, pp. 1–10, 2015, doi: 10.1155/2015/417432.
  • [65] S. Yadav, J. Liu, and S. C. Kim, “A comprehensive study on 21st-century refrigerants - R290 and R1234yf: A review,” International Journal of Heat and Mass Transfer, vol. 182, p. 121947, Jan. 2022, doi: 10.1016/j.ijheatmasstransfer.2021.121947.
  • [66] V. A. Eustace, “Testing and applications of a high temperature gas engine driven heat pump,” Journal of Heat Recovery Systems, vol. 4, no. 4, Art. no. 4, Jan. 1984, doi: 10.1016/0198-7593(84)90064-X.
  • [67] Fridgehub, “Infographic: Driving Natural Alternative Refrigerant Solutions,” news.cision.com, 2013. https://news.cision.com/simply-marcomms/r/infographic--driving-natural-alternative-refrigerant-solutions,c9451968 (accessed Dec. 21, 2021).
  • [68] O. H. Burg and W. Lohstrater, “Energieeinsparung bei der Beheizung und Brauchwasserversorgung in Mehrfamilienhaeusern durch den Einsatz einer Gasmotorangetriebenen Waermepumpe mit der Waermequelle Luft, die Monovalent bis Minus 12 °C Aussentemperatur Arbeiten Soll,” In New Ways to Save Energy: Proceedings of the International Seminar held in Brussels, pp. 266-274, 23–25 Oct. 1979, Springer Netherlands.
  • [69] Y.-L. Li, X.-S. Zhang, and L. Cai, “A novel parallel-type hybrid-power gas engine-driven heat pump system,” International Journal of Refrigeration, vol. 30, no. 7, pp. 1134–1142, Nov. 2007, doi: 10.1016/j.ijrefrig.2007.03.004.
  • [70] R. R. Zhang, X. S. Lu, S. Z. Li, W. S. Lin, and A. Z. Gu, “Analysis on the heating performance of a gas engine driven air to water heat pump based on a steady-state model,” Energy Conversion and Management, vol. 46, no. 11–12, Art. no. 11–12, Jul. 2005, doi: 10.1016/j.enconman.2004.10.009.
  • [71] L. A. Howe, R. Radermacher, and K. E. Herold, “Combined cycles for engine-driven heat pumps,” International Journal of Refrigeration, vol. 12, no. 1, pp. 21–28, Jan. 1989, doi: 10.1016/0140-7007(89)90008-X.
  • [72] Z. Xu and Z. Yang, “Saving energy in the heat-pump air conditioning system driven by gas engine,” Energy and Buildings, vol. 41, no. 2, pp. 206–211, Feb. 2009, doi: 10.1016/j.enbuild.2008.09.001.
  • [73] E. Elgendy, J. Schmidt, A. Khalil, and M. Fatouh, “Performance of a gas engine heat pump (GEHP) using R410A for heating and cooling applications,” Energy, vol. 35, no. 12, pp. 4941–4948, Dec. 2010, doi: 10.1016/j.energy.2010.08.031.
  • [74] S. Sanaye, M. A. Meybodi, and M. Chahartaghi, “Modeling and economic analysis of gas engine heat pumps for residential and commercial buildings in various climate regions of Iran,” Energy and Buildings, vol. 42, no. 7, pp. 1129–1138, Jul. 2010, doi: 10.1016/j.enbuild.2010.02.004.
  • [75] Y. Chen, Z. Yang, X. Wu, M. Wang, and H. Liu, “Theoretical simulation and experimental research on the system of air source energy independence driven by internal-combustion engine,” Energy and Buildings, vol. 43, no. 6, pp. 1351–1358, Jun. 2011, doi: 10.1016/j.enbuild.2011.01.011.
  • [76] E. Elgendy, J. Schmidt, A. Khalil, and M. Fatouh, “Performance of a gas engine driven heat pump for hot water supply systems,” Energy, vol. 36, no. 5, pp. 2883–2889, May 2011, doi: 10.1016/j.energy.2011.02.030.
  • [77] S. Sanaye and M. Chahartaghi, “Thermal modeling and operating tests for the gas engine-driven heat pump systems,” Energy, vol. 35, no. 1, pp. 351–363, Jan. 2010, doi: 10.1016/j.energy.2009.10.001.
  • [78] Z. Yang, W.-B. Wang, and X. Wu, “Thermal modeling and operating tests for a gas driven heat pump working as a water heater in winter,” Energy and Buildings, vol. 58, pp. 219–226, Mar. 2013, doi: 10.1016/j.enbuild.2012.10.049.
  • [79] E. Elgendy, J. Schmidt, A. Khalil, and M. Fatouh, “Modelling and validation of a gas engine heat pump working with R410A for cooling applications,” Applied Energy, vol. 88, no. 12, pp. 4980–4988, Dec. 2011, doi: 10.1016/j.apenergy.2011.06.046.
  • [80] S. Sanaye and M. Chahartaghi, “Thermal—economic modelling and optimization of gas engine-driven heat pump systems,” Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy, vol. 224, no. 4, pp. 463–477, Jun. 2010, doi: 10.1243/09576509JPE920.
  • [81] X. Zhang, Z. Yang, X. Wu, and X.-C. Su, “Evaluation method of gas engine-driven heat pump water heater under the working condition of summer,” Energy and Buildings, vol. 77, pp. 440–444, Jul. 2014, doi: 10.1016/j.enbuild.2014.03.067.
  • [82] E. Elgendy and J. Schmidt, “Optimum utilization of recovered heat of a gas engine heat pump used for water heating at low air temperature,” Energy and Buildings, vol. 80, pp. 375–383, Sep. 2014, doi: 10.1016/j.enbuild.2014.05.054.
  • [83] A. Gungor, Z. Erbay, and A. Hepbasli, “Exergoeconomic analyses of a gas engine driven heat pump drier and food drying process,” Applied Energy, vol. 88, no. 8, pp. 2677–2684, Aug. 2011, doi: 10.1016/j.apenergy.2011.02.001.
  • [84] X. Xu, L. Cai, T. Chen, and Z. Zhan, “Analysis and optimization of a natural gas multi-stage expansion plant integrated with a gas engine-driven heat pump,” Energy, vol. 236, p. 121321, Dec. 2021, doi: 10.1016/j.energy.2021.121321.
  • [85] H. Liu, Q. Zhou, H. Zhao, and P. Wang, “Experiments and thermal modeling on hybrid energy supply system of gas engine heat pumps and organic Rankine cycle,” Energy and Buildings, vol. 87, pp. 226–232, Jan. 2015, doi: 10.1016/j.enbuild.2014.11.046.
  • [86] R. Kamal et al., “Field performance of gas driven heat pumps in a commercial building,” International Journal of Refrigeration, vol. 68, pp. 15–27, Aug. 2016, doi: 10.1016/j.ijrefrig.2016.04.019.
  • [87] J. Lv, J. Tian, Y. Hu, Z. Feng, and W. Song, “Control system and operational characteristics of gas engine-driven heat pump,” International Journal of Refrigeration, vol. 145, pp. 148–157, Jan. 2023, doi: 10.1016/j.ijrefrig.2022.09.020.
  • [88] S. Sanaye and H. Asgari, “Thermal modeling of gas engine driven air to water heat pump systems in heating mode using genetic algorithm and Artificial Neural Network methods,” International Journal of Refrigeration, vol. 36, no. 8, Art. no. 8, Dec. 2013, doi: 10.1016/j.ijrefrig.2013.06.014.
  • [89] W. Ji, L. Cai, Q. Meng, J. Yan, and X. Zhang, “Experimental research and performance study of a coaxial hybrid-power gas engine heat pump system based on LiFePO4 battery,” Energy and Buildings, vol. 113, pp. 1–8, Feb. 2016, doi: 10.1016/j.enbuild.2015.12.034.
  • [90] J. Tian, Y. Hu, J. Lv, Z. Feng, and W. Song, “Modelling and performance analysis of power system in gas engine-driven heat pump,” Applied Thermal Engineering, vol. 223, p. 120015, Mar. 2023, doi: 10.1016/j.applthermaleng.2023.120015.
  • [91] A. Gungor, A. Hepbasli, and H. Gunerhan, “Enhanced exergy analyses of a gas engine heat pump (GEHP) dryer for medicinal and aromatic plants,” IJEX, vol. 18, no. 1, p. 1, 2015, doi: 10.1504/IJEX.2015.072052.
  • [92] Y. Hu, Z. Feng, J. Tian, C. Huang, and W. Song, “Performance of a gas engine-driven heat pump system with R410A for cooling and domestic hot water applications,” International Journal of Refrigeration, p. S0140700722003851, Oct. 2022, doi: 10.1016/j.ijrefrig.2022.10.017.
  • [93] A. Gungor, G. Tsatsaronis, H. Gunerhan, and A. Hepbasli, “Advanced exergoeconomic analysis of a gas engine heat pump (GEHP) for food drying processes,” Energy Conversion and Management, vol. 91, pp. 132–139, Feb. 2015, doi: 10.1016/j.enconman.2014.11.044.
  • [94] A. Gungor, G. Tsatsaronis, H. Gunerhan, and A. Hepbasli, “Advanced exergoeconomic analysis of a gas engine heat pump (GEHP) for food drying processes,” Energy Conversion and Management, vol. 91, pp. 132–139, Feb. 2015, doi: 10.1016/j.enconman.2014.11.044.
  • [95] F. Dong, F. Liu, X. Li, X. You, and D. Zhao, “Exploring heating performance of gas engine heat pump with heat recovery,” J. Cent. South Univ., vol. 23, no. 8, pp. 1931–1936, Aug. 2016, doi: 10.1007/s11771-016-3249-z.
  • [96] Y. Hu, Z. Feng, and W. Song, “Study on performance of a gas engine-driven heat pump system with R410A for heating and domestic hot water applications,” Applied Thermal Engineering, vol. 228, p. 120538, Jun. 2023, doi: 10.1016/j.applthermaleng.2023.120538.
  • [97] W. Zhang, T. Wang, S. Zheng, X. Peng, and X. Wang, “Experimental Study of the Gas Engine Driven Heat Pump with Engine Heat Recovery,” Mathematical Problems in Engineering, vol. 2015, pp. 1–10, 2015, doi: 10.1155/2015/417432.
  • [98] Y. Hu, Z. Feng, and W. Song, “Study on performance of a water-source gas engine-driven heat pump system for combined cooling and heating supply,” Thermal Science and Engineering Progress, vol. 39, p. 101726, Mar. 2023, doi: 10.1016/j.tsep.2023.101726.
  • [99] H. Liu, M. Wang, and S. Li, “Investigation of the polygeneration system integrated with gas engine-driven heat pump system and CO2 Brayton cycle for waste heat recovery,” Applied Thermal Engineering, vol. 221, p. 119872, Feb. 2023, doi: 10.1016/j.applthermaleng.2022.119872.
  • [100] I. Sarbu and C. Sebarchievici, Ground-source heat pumps: fundamentals, experiments and applications. Amsterdam [etc.: Academic Press/Elsevier, 2016.
  • [101] Linde Gas, “Refrigerants Environmental Data: Ozone Depletion and Global Warming Potential,” https://www.lindegas.is/is/images/Refrigerants_Product%20datasheet_Refrigerants%20Environmental%20Data_EN_tcm648-594733.pdf (accessed Dec. 21, 2021).

A REVIEW on PRIMARY ENERGY RATIO VALUES of GAS ENGINE DRIVEN HEAT PUMP SYSTEMS

Year 2024, , 196 - 221, 26.10.2024
https://doi.org/10.47933/ijeir.1547634

Abstract

This study reviews the primary energy ratio values of gas engine driven heat pump systems in order to compare gas engine driven heat pump systems among themselves or with heat pump systems using different energy sources in terms of efficiency values. A comprehensive literature review of studies investigating primary energy rates of gas-driven heat pump systems have been presented. The primary energy ratios obtained in the studies on gas driven heat pump systems were determined and tabulated. In addition, waste heat recovery rates in these systems were also investigated. Studies in the relevant field are grouped as experimental and theoretical. Additionally, the differences in the examined system structures are stated and primary energy ratios are presented. Primary energy rates of systems with and without heat recovery were examined. There is no compilation study on the subject in the literature. The calculation methodology used and the obtained values for calculating the primary energy rates of gas-driven heat pumps are presented. Thus, the energy efficiency and environmental evaluations of the examined systems are presented in the light of the literature. In addition, which refrigerants were used in the studies conducted in the literature are presented. Recommendations are provided on choosing alternative and sustainable refrigerants.

References

  • [1] Y. A. Çengel, M. A. Boles, and A. Pınarbaşı, Termodinamik, Mühendislik Yaklaşımıyla, 5. Baskı. İzmir: İzmir Güven Kitabevi, 2008.
  • [2] C. Zamfirescu and I. Dincer, “Performance investigation of high-temperature heat pumps with various BZT working fluids,” Thermochimica Acta, vol. 488, no. 1–2, Art. no. 1–2, May 2009, doi: 10.1016/j.tca.2009.01.028.
  • [3] K. J. Chua, S. K. Chou, and W. M. Yang, “Advances in heat pump systems: A review,” Applied Energy, vol. 87, no. 12, Art. no. 12, Dec. 2010, doi: 10.1016/j.apenergy.2010.06.014.
  • [4] B. Yu, H. Ouyang, J. Shi, Z. Guo, and J. Chen, “Experimental evaluation of cycle performance for new-developed refrigerants in the electric vehicle heat pump systems,” International Journal of Refrigeration, vol. 129, pp. 118–127, Sep. 2021, doi: 10.1016/j.ijrefrig.2021.04.037.
  • [5] D. P. Zurmuhl et al., “Hybrid geothermal heat pumps for cooling telecommunications data centers,” Energy and Buildings, vol. 188–189, pp. 120–128, Apr. 2019, doi: 10.1016/j.enbuild.2019.01.042.
  • [6] A. Khouya, “Performance assessment of a heat pump and a concentrated photovoltaic thermal system during the wood drying process,” Applied Thermal Engineering, vol. 180, p. 115923, Nov. 2020, doi: 10.1016/j.applthermaleng.2020.115923.
  • [7] C. Tunckal and İ. Doymaz, “Performance analysis and mathematical modelling of banana slices in a heat pump drying system,” Renewable Energy, vol. 150, pp. 918–923, May 2020, doi: 10.1016/j.renene.2020.01.040.
  • [8] X. Cao, J. Zhang, Z.-Y. Li, L.-L. Shao, and C.-L. Zhang, “Process simulation and analysis of a closed-loop heat pump clothes dryer,” Applied Thermal Engineering, vol. 199, p. 117545, Nov. 2021, doi: 10.1016/j.applthermaleng.2021.117545.
  • [9] A. Khalifa, A. Mezghani, and H. Alawami, “Analysis of integrated membrane distillation-heat pump system for water desalination,” Desalination, vol. 510, p. 115087, Aug. 2021, doi: 10.1016/j.desal.2021.115087.
  • [10] X. Li, Z. Wang, M. Yang, Y. Bai, and G. Yuan, “Proposal and performance analysis of solar cogeneration system coupled with absorption heat pump,” Applied Thermal Engineering, vol. 159, p. 113873, Aug. 2019, doi: 10.1016/j.applthermaleng.2019.113873.
  • [11] A. M. Brockway and P. Delforge, “Emissions reduction potential from electric heat pumps in California homes,” The Electricity Journal, vol. 31, no. 9, pp. 44–53, Nov. 2018, doi: 10.1016/j.tej.2018.10.012.
  • [12] D. Wu, B. Hu, and R. Z. Wang, “Performance simulation and exergy analysis of a hybrid source heat pump system with low GWP refrigerants,” Renewable Energy, vol. 116, pp. 775–785, Feb. 2018, doi: 10.1016/j.renene.2017.10.024.
  • [13] C. Sáez Blázquez, D. Borge-Diez, I. Martín Nieto, A. Farfán Martín, and D. González-Aguilera, “Technical optimization of the energy supply in geothermal heat pumps,” Geothermics, vol. 81, pp. 133–142, Sep. 2019, doi: 10.1016/j.geothermics.2019.04.008.
  • [14] L.-L. Jia, R. Zhang, X. Zhang, Z.-X. Ma, and F.-G. Liu, “Experimental analysis of a novel gas-engine-driven heat pump (GEHP) system for combined cooling and hot-water supply,” International Journal of Refrigeration, vol. 118, pp. 84–92, Oct. 2020, doi: 10.1016/j.ijrefrig.2020.04.033.
  • [15] L. W. Yang et al., “Review of the advances in solar-assisted air source heat pumps for the domestic sector,” Energy Conversion and Management, vol. 247, p. 114710, Nov. 2021, doi: 10.1016/j.enconman.2021.114710.
  • [16] Z. Lian, S. Park, W. Huang, Y. Baik, and Y. Yao, “Conception of combination of gas-engine-driven heat pump and water-loop heat pump system,” International Journal of Refrigeration, vol. 28, no. 6, Art. no. 6, Sep. 2005, doi: 10.1016/j.ijrefrig.2005.02.004.
  • [17] A. Hepbasli, Z. Erbay, F. Icier, N. Colak, and E. Hancioglu, “A review of gas engine driven heat pumps (GEHPs) for residential and industrial applications,” Renewable and Sustainable Energy Reviews, vol. 13, no. 1, pp. 85–99, Jan. 2009, doi: 10.1016/j.rser.2007.06.014.
  • [18] Z. Tian, F. Liu, C. Tian, Z. Ma, L. Jia, and R. Zhang, “Experimental investigation on cooling performance and optimal superheat of water source gas engine-driven heat pump system,” Applied Thermal Engineering, vol. 178, p. 115494, Sep. 2020, doi: 10.1016/j.applthermaleng.2020.115494.
  • [19] S. Li, W. Zhang, R. Zhang, D. Lv, and Z. Huang, “Cascade fuzzy control for gas engine driven heat pump,” Energy Conversion and Management, vol. 46, no. 11–12, Art. no. 11–12, Jul. 2005, doi: 10.1016/j.enconman.2004.09.003.
  • [20] I. Dincer and M. A. Rosen, “Heat Pump Systems,” in Exergy Analysis of Heating, Refrigerating and Air Conditioning, Elsevier, 2015, pp. 131–168. doi: 10.1016/B978-0-12-417203-6.00004-1.
  • [21] R. Zhang, Z. Tian, F. Liu, C. Tian, Z. Ma, and L. Jia, “Research on waste heat recovery from gas engine for auxiliary heating: An emerging operation strategy to gas engine-driven heat pump,” International Journal of Refrigeration, vol. 121, pp. 206–215, Jan. 2021, doi: 10.1016/j.ijrefrig.2020.09.015.
  • [22] Z. Yang, H. Cheng, X. Wu, and Y. Chen, “Research on improving energy efficiency and the annual distributing structure in electricity and gas consumption by extending use of GEHP,” Energy Policy, vol. 39, no. 9, pp. 5192–5202, Sep. 2011, doi: 10.1016/j.enpol.2011.05.045.
  • [23] M. Wang, Y. Chen, and Q. Liu, “Experimental study on the gas engine speed control and heating performance of a gas Engine-driven heat pump,” Energy and Buildings, vol. 178, pp. 84–93, Nov. 2018, doi: 10.1016/j.enbuild.2018.08.041.
  • [24] A. Gungor, Z. Erbay, A. Hepbasli, and H. Gunerhan, “Splitting the exergy destruction into avoidable and unavoidable parts of a gas engine heat pump (GEHP) for food drying processes based on experimental values,” Energy Conversion and Management, vol. 73, pp. 309–316, Sep. 2013, doi: 10.1016/j.enconman.2013.04.033.
  • [25] J. Wu and Y. Ma, “Experimental study on performance of a biogas engine driven air source heat pump system powered by renewable landfill gas,” International Journal of Refrigeration, vol. 62, pp. 19–29, Feb. 2016, doi: 10.1016/j.ijrefrig.2015.08.023.
  • [26] B. Hu, C. Li, X. Yin, F. Cao, and P. Shu, “Thermal modeling and experimental research of a gas engine-driven heat pump in variable condition,” Applied Thermal Engineering, vol. 123, pp. 1504–1513, Aug. 2017, doi: 10.1016/j.applthermaleng.2017.05.189.
  • [27] E. Elgendy and J. Schmidt, “Experimental study of gas engine driven air to water heat pump in cooling mode,” Energy, vol. 35, no. 6, Art. no. 6, Jun. 2010, doi: 10.1016/j.energy.2010.02.040.
  • [28] S. Sanaye and H. Asgari, “Thermal modeling of gas engine driven air to water heat pump systems in heating mode using genetic algorithm and Artificial Neural Network methods,” International Journal of Refrigeration, vol. 36, no. 8, Art. no. 8, Dec. 2013, doi: 10.1016/j.ijrefrig.2013.06.014.
  • [29] E. Elgendy and J. Schmidt, “Optimum utilization of recovered heat of a gas engine heat pump used for water heating at low air temperature,” Energy and Buildings, vol. 80, pp. 375–383, Sep. 2014, doi: 10.1016/j.enbuild.2014.05.054.
  • [30] X. Wu, Z. Yang, H. Liu, Z. Huan, and W. Wang, “The Performance of Mixture Refrigerant R134a/R152a in a Novel Gas Engine-Driven Heat Pump System,” International Journal of Green Energy, vol. 11, no. 1, Art. no. 1, Jan. 2014, doi: 10.1080/15435075.2013.769877.
  • [31] H. Hao, L. Mao, G. Feng, and H. Wen, “Study on Simulation Performance of Solar Energy and Gas Heat Pump for Heating Supply,” Procedia Engineering, vol. 121, pp. 1482–1489, 2015, doi: 10.1016/j.proeng.2015.09.074.
  • [32] H. Liu, Q. Zhou, H. Zhao, and P. Wang, “Experiments and thermal modeling on hybrid energy supply system of gas engine heat pumps and organic Rankine cycle,” Energy and Buildings, vol. 87, pp. 226–232, Jan. 2015, doi: 10.1016/j.enbuild.2014.11.046.
  • [33] W. Jiang, L. Cai, J. Wang, W. Deng, and X. Zhang, “Simulation and validation of a hybrid-power gas engine heat pump,” International Journal of Refrigeration, vol. 50, pp. 114–126, Feb. 2015, doi: 10.1016/j.ijrefrig.2014.10.020.
  • [34] H. Liu, Q. Zhou, and H. Zhao, “Experimental study on cooling performance and energy saving of gas engine-driven heat pump system with evaporative condenser,” Energy Conversion and Management, vol. 123, pp. 200–208, Sep. 2016, doi: 10.1016/j.enconman.2016.06.044.
  • [35] X. Wan, L. Cai, J. Yan, X. Ma, T. Chen, and X. Zhang, “Power management strategy for a parallel hybrid-power gas engine heat pump system,” Applied Thermal Engineering, vol. 110, pp. 234–243, Jan. 2017, doi: 10.1016/j.applthermaleng.2016.07.138.
  • [36] F.-G. Liu, Z.-Y. Tian, F.-J. Dong, C. Yan, R. Zhang, and A.-B. Yan, “Experimental study on the performance of a gas engine heat pump for heating and domestic hot water,” Energy and Buildings, vol. 152, pp. 273–278, Oct. 2017, doi: 10.1016/j.enbuild.2017.07.051.
  • [37] F. Liu, F. Dong, A. Yan, Y. Li, C. Yan, and J. Li, “Heating performance of a parallel gas engine compression-absorption heat pump,” Applied Thermal Engineering, vol. 123, pp. 1308–1317, Aug. 2017, doi: 10.1016/j.applthermaleng.2017.05.049.
  • [38] Z. Qiang and Y. Zhao, “The Research on Operating Characteristic of Gas Engine Heat Pump System with Energy Storage (ESGEHP) System,” Energy Procedia, vol. 142, pp. 1213–1221, Dec. 2017, doi: 10.1016/j.egypro.2017.12.509.
  • [39] Q. Zhang, Z. Yang, and Y.-D. Gao, “The multi-goal optimal analysis of stand-alone gas engine heat pump system with energy storage (ESGEHP) system,” Energy and Buildings, vol. 139, pp. 525–534, Mar. 2017, doi: 10.1016/j.enbuild.2017.01.039.
  • [40] F.-G. Liu, Z.-Y. Tian, F.-J. Dong, G.-Z. Cao, R. Zhang, and A.-B. Yan, “Experimental investigation of a gas engine-driven heat pump system for cooling and heating operation,” International Journal of Refrigeration, vol. 86, pp. 196–202, Feb. 2018, doi: 10.1016/j.ijrefrig.2017.10.034.
  • [41] F. Liu, F. Dong, Y. Li, and L. Jia, “Study on the heating performance and optimal intermediate temperature of a series gas engine compression-absorption heat pump system,” Applied Thermal Engineering, vol. 135, pp. 34–40, May 2018, doi: 10.1016/j.applthermaleng.2018.02.010.
  • [42] Q. Zhang, Z. Yang, N. Li, R. Feng, and Y. Gao, “The influence of building using function on the operating characteristics of the gas engine driven heat pump with energy storage system (ESGEHPs),” Energy and Buildings, vol. 167, pp. 136–151, May 2018, doi: 10.1016/j.enbuild.2018.02.039.
  • [43] X. Ma, L. Cai, Q. Meng, T. Chen, and X. Zhang, “Dynamic optimal control and economic analysis of a coaxial parallel-type hybrid power gas engine-driven heat pump,” Applied Thermal Engineering, vol. 131, pp. 607–620, Feb. 2018, doi: 10.1016/j.applthermaleng.2017.12.011.
  • [44] W. Zhang, X. Yang, T. Wang, X. Peng, and X. Wang, “Experimental Study of a Gas Engine-driven Heat Pump System for Space Heating and Cooling,” Civ Eng J, vol. 5, no. 10, Art. no. 10, Oct. 2019, doi: 10.28991/cej-2019-03091411.
  • [45] Z. Ma, F. Liu, C. Tian, L. Jia, and W. Wu, “Experimental comparisons on a gas engine heat pump using R134a and low-GWP refrigerant R152a,” International Journal of Refrigeration, vol. 115, pp. 73–82, Jul. 2020, doi: 10.1016/j.ijrefrig.2020.03.007.
  • [46] R. Zhang, Z. Tian, F. Liu, C. Tian, Z. Ma, and L. Jia, “Research on waste heat recovery from gas engine for auxiliary heating: An emerging operation strategy to gas engine-driven heat pump,” International Journal of Refrigeration, vol. 121, pp. 206–215, Jan. 2021, doi: 10.1016/j.ijrefrig.2020.09.015.
  • [47] E. Elgendy and J. Schmidt, “Experimental study of gas engine driven air to water heat pump in cooling mode,” Energy, vol. 35, no. 6, pp. 2461–2467, Jun. 2010, doi: 10.1016/j.energy.2010.02.040.
  • [48] S. Sanaye, M. Chahartaghi, and H. Asgari, “Dynamic modeling of Gas Engine driven Heat Pump system in cooling mode,” Energy, vol. 55, pp. 195–208, Jun. 2013, doi: 10.1016/j.energy.2013.03.074.
  • [49] X. Wu, Z. Yang, H. Liu, Z. Huan, and W. Wang, “The Performance of Mixture Refrigerant R134a/R152a in a Novel Gas Engine-Driven Heat Pump System,” International Journal of Green Energy, vol. 11, no. 1, pp. 60–74, Jan. 2014, doi: 10.1080/15435075.2013.769877.
  • [50] H. Hao, L. Mao, G. Feng, and H. Wen, “Study on Simulation Performance of Solar Energy and Gas Heat Pump for Heating Supply,” Procedia Engineering, vol. 121, pp. 1482–1489, 2015, doi: 10.1016/j.proeng.2015.09.074.
  • [51] W. Jiang, L. Cai, J. Wang, W. Deng, and X. Zhang, “Simulation and validation of a hybrid-power gas engine heat pump,” International Journal of Refrigeration, vol. 50, pp. 114–126, Feb. 2015, doi: 10.1016/j.ijrefrig.2014.10.020.
  • [52] H. Liu, Q. Zhou, and H. Zhao, “Experimental study on cooling performance and energy saving of gas engine-driven heat pump system with evaporative condenser,” Energy Conversion and Management, vol. 123, pp. 200–208, Sep. 2016, doi: 10.1016/j.enconman.2016.06.044.
  • [53] X. Wan, L. Cai, J. Yan, X. Ma, T. Chen, and X. Zhang, “Power management strategy for a parallel hybrid-power gas engine heat pump system,” Applied Thermal Engineering, vol. 110, pp. 234–243, Jan. 2017, doi: 10.1016/j.applthermaleng.2016.07.138.
  • [54] F.-G. Liu, Z.-Y. Tian, F.-J. Dong, C. Yan, R. Zhang, and A.-B. Yan, “Experimental study on the performance of a gas engine heat pump for heating and domestic hot water,” Energy and Buildings, vol. 152, pp. 273–278, Oct. 2017, doi: 10.1016/j.enbuild.2017.07.051.
  • [55] Q. Zhang, Z. Yang, and Y.-D. Gao, “The multi-goal optimal analysis of stand-alone gas engine heat pump system with energy storage (ESGEHP) system,” Energy and Buildings, vol. 139, pp. 525–534, Mar. 2017, doi: 10.1016/j.enbuild.2017.01.039.
  • [56] Z. Qiang and Y. Zhao, “The Research on Operating Characteristic of Gas Engine Heat Pump System with Energy Storage (ESGEHP) System,” Energy Procedia, vol. 142, pp. 1213–1221, Dec. 2017, doi: 10.1016/j.egypro.2017.12.509.
  • [57] F. Liu, F. Dong, A. Yan, Y. Li, C. Yan, and J. Li, “Heating performance of a parallel gas engine compression-absorption heat pump,” Applied Thermal Engineering, vol. 123, pp. 1308–1317, Aug. 2017, doi: 10.1016/j.applthermaleng.2017.05.049.
  • [58] Q. Zhang, Z. Yang, N. Li, R. Feng, and Y. Gao, “The influence of building using function on the operating characteristics of the gas engine driven heat pump with energy storage system (ESGEHPs),” Energy and Buildings, vol. 167, pp. 136–151, May 2018, doi: 10.1016/j.enbuild.2018.02.039.
  • [59] F.-G. Liu, Z.-Y. Tian, F.-J. Dong, G.-Z. Cao, R. Zhang, and A.-B. Yan, “Experimental investigation of a gas engine-driven heat pump system for cooling and heating operation,” International Journal of Refrigeration, vol. 86, pp. 196–202, Feb. 2018, doi: 10.1016/j.ijrefrig.2017.10.034.
  • [60] F. Liu, F. Dong, Y. Li, and L. Jia, “Study on the heating performance and optimal intermediate temperature of a series gas engine compression-absorption heat pump system,” Applied Thermal Engineering, vol. 135, pp. 34–40, May 2018, doi: 10.1016/j.applthermaleng.2018.02.010.
  • [61] W. Zhang, X. Yang, T. Wang, X. Peng, and X. Wang, “Experimental Study of a Gas Engine-driven Heat Pump System for Space Heating and Cooling,” Civ Eng J, vol. 5, no. 10, pp. 2282–2295, Oct. 2019, doi: 10.28991/cej-2019-03091411.
  • [62] Z. Ma, F. Liu, C. Tian, L. Jia, and W. Wu, “Experimental comparisons on a gas engine heat pump using R134a and low-GWP refrigerant R152a,” International Journal of Refrigeration, vol. 115, pp. 73–82, Jul. 2020, doi: 10.1016/j.ijrefrig.2020.03.007.
  • [63] E. Elgendy, J. Schmidt, A. Khalil, and M. Fatouh, “Performance of a gas engine driven heat pump for hot water supply systems,” Energy, vol. 36, no. 5, Art. no. 5, May 2011, doi: 10.1016/j.energy.2011.02.030.
  • [64] W. Zhang, T. Wang, S. Zheng, X. Peng, and X. Wang, “Experimental Study of the Gas Engine Driven Heat Pump with Engine Heat Recovery,” Mathematical Problems in Engineering, vol. 2015, pp. 1–10, 2015, doi: 10.1155/2015/417432.
  • [65] S. Yadav, J. Liu, and S. C. Kim, “A comprehensive study on 21st-century refrigerants - R290 and R1234yf: A review,” International Journal of Heat and Mass Transfer, vol. 182, p. 121947, Jan. 2022, doi: 10.1016/j.ijheatmasstransfer.2021.121947.
  • [66] V. A. Eustace, “Testing and applications of a high temperature gas engine driven heat pump,” Journal of Heat Recovery Systems, vol. 4, no. 4, Art. no. 4, Jan. 1984, doi: 10.1016/0198-7593(84)90064-X.
  • [67] Fridgehub, “Infographic: Driving Natural Alternative Refrigerant Solutions,” news.cision.com, 2013. https://news.cision.com/simply-marcomms/r/infographic--driving-natural-alternative-refrigerant-solutions,c9451968 (accessed Dec. 21, 2021).
  • [68] O. H. Burg and W. Lohstrater, “Energieeinsparung bei der Beheizung und Brauchwasserversorgung in Mehrfamilienhaeusern durch den Einsatz einer Gasmotorangetriebenen Waermepumpe mit der Waermequelle Luft, die Monovalent bis Minus 12 °C Aussentemperatur Arbeiten Soll,” In New Ways to Save Energy: Proceedings of the International Seminar held in Brussels, pp. 266-274, 23–25 Oct. 1979, Springer Netherlands.
  • [69] Y.-L. Li, X.-S. Zhang, and L. Cai, “A novel parallel-type hybrid-power gas engine-driven heat pump system,” International Journal of Refrigeration, vol. 30, no. 7, pp. 1134–1142, Nov. 2007, doi: 10.1016/j.ijrefrig.2007.03.004.
  • [70] R. R. Zhang, X. S. Lu, S. Z. Li, W. S. Lin, and A. Z. Gu, “Analysis on the heating performance of a gas engine driven air to water heat pump based on a steady-state model,” Energy Conversion and Management, vol. 46, no. 11–12, Art. no. 11–12, Jul. 2005, doi: 10.1016/j.enconman.2004.10.009.
  • [71] L. A. Howe, R. Radermacher, and K. E. Herold, “Combined cycles for engine-driven heat pumps,” International Journal of Refrigeration, vol. 12, no. 1, pp. 21–28, Jan. 1989, doi: 10.1016/0140-7007(89)90008-X.
  • [72] Z. Xu and Z. Yang, “Saving energy in the heat-pump air conditioning system driven by gas engine,” Energy and Buildings, vol. 41, no. 2, pp. 206–211, Feb. 2009, doi: 10.1016/j.enbuild.2008.09.001.
  • [73] E. Elgendy, J. Schmidt, A. Khalil, and M. Fatouh, “Performance of a gas engine heat pump (GEHP) using R410A for heating and cooling applications,” Energy, vol. 35, no. 12, pp. 4941–4948, Dec. 2010, doi: 10.1016/j.energy.2010.08.031.
  • [74] S. Sanaye, M. A. Meybodi, and M. Chahartaghi, “Modeling and economic analysis of gas engine heat pumps for residential and commercial buildings in various climate regions of Iran,” Energy and Buildings, vol. 42, no. 7, pp. 1129–1138, Jul. 2010, doi: 10.1016/j.enbuild.2010.02.004.
  • [75] Y. Chen, Z. Yang, X. Wu, M. Wang, and H. Liu, “Theoretical simulation and experimental research on the system of air source energy independence driven by internal-combustion engine,” Energy and Buildings, vol. 43, no. 6, pp. 1351–1358, Jun. 2011, doi: 10.1016/j.enbuild.2011.01.011.
  • [76] E. Elgendy, J. Schmidt, A. Khalil, and M. Fatouh, “Performance of a gas engine driven heat pump for hot water supply systems,” Energy, vol. 36, no. 5, pp. 2883–2889, May 2011, doi: 10.1016/j.energy.2011.02.030.
  • [77] S. Sanaye and M. Chahartaghi, “Thermal modeling and operating tests for the gas engine-driven heat pump systems,” Energy, vol. 35, no. 1, pp. 351–363, Jan. 2010, doi: 10.1016/j.energy.2009.10.001.
  • [78] Z. Yang, W.-B. Wang, and X. Wu, “Thermal modeling and operating tests for a gas driven heat pump working as a water heater in winter,” Energy and Buildings, vol. 58, pp. 219–226, Mar. 2013, doi: 10.1016/j.enbuild.2012.10.049.
  • [79] E. Elgendy, J. Schmidt, A. Khalil, and M. Fatouh, “Modelling and validation of a gas engine heat pump working with R410A for cooling applications,” Applied Energy, vol. 88, no. 12, pp. 4980–4988, Dec. 2011, doi: 10.1016/j.apenergy.2011.06.046.
  • [80] S. Sanaye and M. Chahartaghi, “Thermal—economic modelling and optimization of gas engine-driven heat pump systems,” Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy, vol. 224, no. 4, pp. 463–477, Jun. 2010, doi: 10.1243/09576509JPE920.
  • [81] X. Zhang, Z. Yang, X. Wu, and X.-C. Su, “Evaluation method of gas engine-driven heat pump water heater under the working condition of summer,” Energy and Buildings, vol. 77, pp. 440–444, Jul. 2014, doi: 10.1016/j.enbuild.2014.03.067.
  • [82] E. Elgendy and J. Schmidt, “Optimum utilization of recovered heat of a gas engine heat pump used for water heating at low air temperature,” Energy and Buildings, vol. 80, pp. 375–383, Sep. 2014, doi: 10.1016/j.enbuild.2014.05.054.
  • [83] A. Gungor, Z. Erbay, and A. Hepbasli, “Exergoeconomic analyses of a gas engine driven heat pump drier and food drying process,” Applied Energy, vol. 88, no. 8, pp. 2677–2684, Aug. 2011, doi: 10.1016/j.apenergy.2011.02.001.
  • [84] X. Xu, L. Cai, T. Chen, and Z. Zhan, “Analysis and optimization of a natural gas multi-stage expansion plant integrated with a gas engine-driven heat pump,” Energy, vol. 236, p. 121321, Dec. 2021, doi: 10.1016/j.energy.2021.121321.
  • [85] H. Liu, Q. Zhou, H. Zhao, and P. Wang, “Experiments and thermal modeling on hybrid energy supply system of gas engine heat pumps and organic Rankine cycle,” Energy and Buildings, vol. 87, pp. 226–232, Jan. 2015, doi: 10.1016/j.enbuild.2014.11.046.
  • [86] R. Kamal et al., “Field performance of gas driven heat pumps in a commercial building,” International Journal of Refrigeration, vol. 68, pp. 15–27, Aug. 2016, doi: 10.1016/j.ijrefrig.2016.04.019.
  • [87] J. Lv, J. Tian, Y. Hu, Z. Feng, and W. Song, “Control system and operational characteristics of gas engine-driven heat pump,” International Journal of Refrigeration, vol. 145, pp. 148–157, Jan. 2023, doi: 10.1016/j.ijrefrig.2022.09.020.
  • [88] S. Sanaye and H. Asgari, “Thermal modeling of gas engine driven air to water heat pump systems in heating mode using genetic algorithm and Artificial Neural Network methods,” International Journal of Refrigeration, vol. 36, no. 8, Art. no. 8, Dec. 2013, doi: 10.1016/j.ijrefrig.2013.06.014.
  • [89] W. Ji, L. Cai, Q. Meng, J. Yan, and X. Zhang, “Experimental research and performance study of a coaxial hybrid-power gas engine heat pump system based on LiFePO4 battery,” Energy and Buildings, vol. 113, pp. 1–8, Feb. 2016, doi: 10.1016/j.enbuild.2015.12.034.
  • [90] J. Tian, Y. Hu, J. Lv, Z. Feng, and W. Song, “Modelling and performance analysis of power system in gas engine-driven heat pump,” Applied Thermal Engineering, vol. 223, p. 120015, Mar. 2023, doi: 10.1016/j.applthermaleng.2023.120015.
  • [91] A. Gungor, A. Hepbasli, and H. Gunerhan, “Enhanced exergy analyses of a gas engine heat pump (GEHP) dryer for medicinal and aromatic plants,” IJEX, vol. 18, no. 1, p. 1, 2015, doi: 10.1504/IJEX.2015.072052.
  • [92] Y. Hu, Z. Feng, J. Tian, C. Huang, and W. Song, “Performance of a gas engine-driven heat pump system with R410A for cooling and domestic hot water applications,” International Journal of Refrigeration, p. S0140700722003851, Oct. 2022, doi: 10.1016/j.ijrefrig.2022.10.017.
  • [93] A. Gungor, G. Tsatsaronis, H. Gunerhan, and A. Hepbasli, “Advanced exergoeconomic analysis of a gas engine heat pump (GEHP) for food drying processes,” Energy Conversion and Management, vol. 91, pp. 132–139, Feb. 2015, doi: 10.1016/j.enconman.2014.11.044.
  • [94] A. Gungor, G. Tsatsaronis, H. Gunerhan, and A. Hepbasli, “Advanced exergoeconomic analysis of a gas engine heat pump (GEHP) for food drying processes,” Energy Conversion and Management, vol. 91, pp. 132–139, Feb. 2015, doi: 10.1016/j.enconman.2014.11.044.
  • [95] F. Dong, F. Liu, X. Li, X. You, and D. Zhao, “Exploring heating performance of gas engine heat pump with heat recovery,” J. Cent. South Univ., vol. 23, no. 8, pp. 1931–1936, Aug. 2016, doi: 10.1007/s11771-016-3249-z.
  • [96] Y. Hu, Z. Feng, and W. Song, “Study on performance of a gas engine-driven heat pump system with R410A for heating and domestic hot water applications,” Applied Thermal Engineering, vol. 228, p. 120538, Jun. 2023, doi: 10.1016/j.applthermaleng.2023.120538.
  • [97] W. Zhang, T. Wang, S. Zheng, X. Peng, and X. Wang, “Experimental Study of the Gas Engine Driven Heat Pump with Engine Heat Recovery,” Mathematical Problems in Engineering, vol. 2015, pp. 1–10, 2015, doi: 10.1155/2015/417432.
  • [98] Y. Hu, Z. Feng, and W. Song, “Study on performance of a water-source gas engine-driven heat pump system for combined cooling and heating supply,” Thermal Science and Engineering Progress, vol. 39, p. 101726, Mar. 2023, doi: 10.1016/j.tsep.2023.101726.
  • [99] H. Liu, M. Wang, and S. Li, “Investigation of the polygeneration system integrated with gas engine-driven heat pump system and CO2 Brayton cycle for waste heat recovery,” Applied Thermal Engineering, vol. 221, p. 119872, Feb. 2023, doi: 10.1016/j.applthermaleng.2022.119872.
  • [100] I. Sarbu and C. Sebarchievici, Ground-source heat pumps: fundamentals, experiments and applications. Amsterdam [etc.: Academic Press/Elsevier, 2016.
  • [101] Linde Gas, “Refrigerants Environmental Data: Ozone Depletion and Global Warming Potential,” https://www.lindegas.is/is/images/Refrigerants_Product%20datasheet_Refrigerants%20Environmental%20Data_EN_tcm648-594733.pdf (accessed Dec. 21, 2021).
There are 101 citations in total.

Details

Primary Language English
Subjects Energy Generation, Conversion and Storage (Excl. Chemical and Electrical)
Journal Section Review
Authors

Ali Karacan 0000-0001-9225-4830

Arif Emre Özgür 0000-0001-6382-5462

Early Pub Date October 26, 2024
Publication Date October 26, 2024
Submission Date September 10, 2024
Acceptance Date October 15, 2024
Published in Issue Year 2024

Cite

APA Karacan, A., & Özgür, A. E. (2024). A REVIEW on PRIMARY ENERGY RATIO VALUES of GAS ENGINE DRIVEN HEAT PUMP SYSTEMS. International Journal of Engineering and Innovative Research, 6(3), 196-221. https://doi.org/10.47933/ijeir.1547634

88x31.png

This work is licensed under a Creative Commons Attribution 4.0 International License