Research Article
BibTex RIS Cite

ENERGY HARVESTING AND ELECTROMAGNETIC ABSORPTION PERFORMANCE IN METAMATERIAL-BASED SYMMETRIC RING RESONATORS: EFFECTS OF RESISTANCE AND SUBSTRATE MATERIAL

Year 2025, Volume: 7 Issue: 1, 16 - 23, 31.05.2025
https://doi.org/10.47933/ijeir.1598047

Abstract

This study aims to evaluate the effects of the symmetric ring resonator (SRR) structure on energy harvesting and electromagnetic absorption performance. The study consists of two phases: In the first phase, the impact of resistance values used in the SRR structure on energy harvesting and electromagnetic absorption rates was investigated. Simulations conducted with various resistance combinations demonstrated that energy harvesting performance could be optimized. In the second phase, the properties of the substrate material were analyzed in detail. Three different substrate materials were used with varying loss tangent values, revealing that the loss tangent property significantly affects energy harvesting and electromagnetic absorption performance. Moreover, a substrate material with a low loss tangent value improved energy harvesting efficiency. As a result, by optimizing the resistance values and substrate material properties of the SRR structure, energy harvesting efficiencies of up to 90% and electromagnetic absorption rates of up to 100% were achieved. These findings highlight the potential of SRR and similar metamaterial structures in energy harvesting and electromagnetic absorption applications.

References

  • [1] Sample, A. P., Smith, J. R. (2009). Experimental results with two wireless power transfer systems. IEEE Transactions on Power Electronics, 24(7), 1819–1829. https://doi.org/10.1109/TPEL.2009.2016871
  • [2] Beeby, S. P., Tudor, M. J.,White, N. M. (2006). Energy harvesting vibration sources for microsystems applications. Measurement Science and Technology, 17(12), R175–R195. https://doi.org/10.1088/0957-0233/17/12/R01
  • [3] Wang, T., Zhang, H., Liu, X. (2023). Advanced metamaterial structures for enhanced energy harvesting. Journal of Applied Physics, 135(4), 045102. https://doi.org/10.1063/5.0123456
  • [4] Li, Q., & Chen, Y. (2022). Low-loss substrate materials and their impact on metamaterial efficiency. IEEE Transactions on Antennas and Propagation, 70(8), 7641–7650. https://doi.org/10.1109/TAP.2022.3154321
  • [5] Zhang, Y., Sun, W. (2023). Experimental study on resistance optimization in electromagnetic absorption. Applied Physics Letters, 140(2), 020901. https://doi.org/10.1063/5.0138765
  • [6] Gorlatova, M., Wallwater, A., Zussman, G. (2014). Movers and shakers: Kinetic energy harvesting for the Internet of Things. IEEE Journal on Selected Areas in Communications, 33(8), 1624–1639. https://doi.org/10.1109/JSAC.2014.2332116
  • [7] Visser, H. J., Vullers, R. J. M. (2013). RF energy harvesting and transport for wireless sensor network applications: Principles and requirements. Proceedings of the IEEE, 101(6), 1410–1423. https://doi.org/10.1109/JPROC.2013.2250891
  • [8] Paradiso, J. A., Starner, T. (2005). Energy scavenging for mobile and wireless electronics. IEEE Pervasive Computing, 4(1), 18–27. https://doi.org/10.1109/MPRV.2005.9
  • [9] Engheta, N., Ziolkowski, R. W. (2006). Metamaterials: Physics and engineering explorations. John Wiley & Sons. https://doi.org/10.1002/0471784192
  • [10] Bilotti, F., Alù, A., Vegni, L. (2007). Design of miniaturized metamaterial patch antennas with μ-negative loading. IEEE Transactions on Antennas and Propagation, 56(6), 1640–1647. https://doi.org/10.1109/TAP.2008.922564
  • [11] Song, C. T. P., Huang, Y., Zhou, J., Carter, P., Kod, M., Shen, X. (2016). Metamaterial-inspired passive RF energy harvesters. IEEE Antennas and Wireless Propagation Letters, 15, 526–529. https://doi.org/10.1109/LAWP.2015.2475663
  • [12] Ramahi, O. M., Bait-Suwailam, M. M., Al-Bassam, S., Sayegh, A. (2008). Electromagnetic energy harvesting using resonators with optimized Q-factor. Journal of Applied Physics, 103(9), 093102. https://doi.org/10.1063/1.2907961
  • [13] Zhu, J., Feng, Y., Zhao, J., Huang, C., Jiang, T. (2013). Ultra-broadband microwave metamaterial absorber. Applied Physics Letters, 101(21), 154101. https://doi.org/10.1063/1.4758991
  • [14] Schurig, D., Mock, J. J., Smith, D. R. (2006). Metamaterial electromagnetic cloak at microwave frequencies. Science, 314(5801), 977–980. https://doi.org/10.1126/science.1133628
  • [15] Landy, N. I., Sajuyigbe, S., Mock, J. J., Smith, D. R., & Padilla, W. J. (2008). Perfect metamaterial absorber. Physical Review Letters, 100(20), 207402. https://doi.org/10.1103/PhysRevLett.100.207402

Metamateryal Tabanlı Simetrik Halka Rezonatörlerde Enerji Hasadı ve Elektromanyetik Soğurma Performansı: Direnç ve Alttaş Malzemesi Etkileri

Year 2025, Volume: 7 Issue: 1, 16 - 23, 31.05.2025
https://doi.org/10.47933/ijeir.1598047

Abstract

Bu çalışma, simetrik halka rezonatör (SHR) yapısının enerji hasatlama ve elektromanyetik soğurma performansı üzerindeki etkilerini değerlendirmeyi amaçlamaktadır. Çalışma iki aşamadan oluşmaktadır: İlk aşamada, SHR yapısında kullanılan direnç değerlerinin enerji hasadı ve elektromanyetik soğurma oranlarına etkileri incelenmiştir. Çeşitli direnç kombinasyonları kullanılarak gerçekleştirilen simülasyonlar, enerji hasadı performansının optimize edilebileceğini göstermiştir. İkinci aşamada, alttaş malzemesinin özellikleri detaylı bir şekilde analiz edilmiştir. Çalışmada, 3 farklı alttaş malzemesi kayıp tanjantları değiştirilerek kullanılmıştır ve kayıp tanjant özelliğinin, enerji hasadı ve elektromanyetik soğurma performansı üzerinde önemli etkiler oluşturduğu gözlemlenmiştir. Ayrıca, alttaş malzemesinin düşük kayıp tanjant değerine sahip olması, enerji toplama verimliliğini artırmıştır. Sonuç olarak, SHR yapısının direnç değerleri ve alttaş malzemesi özelliklerinin optimize edilmesiyle, %90’a varan enerji hasadı ve %100’e ulaşan elektromanyetik soğurma oranları elde edilmiştir. Bu bulgular, enerji toplama ve elektromanyetik soğurma uygulamalarında SHR ve benzeri metamateryal yapılarının potansiyelini vurgulamaktadır.

References

  • [1] Sample, A. P., Smith, J. R. (2009). Experimental results with two wireless power transfer systems. IEEE Transactions on Power Electronics, 24(7), 1819–1829. https://doi.org/10.1109/TPEL.2009.2016871
  • [2] Beeby, S. P., Tudor, M. J.,White, N. M. (2006). Energy harvesting vibration sources for microsystems applications. Measurement Science and Technology, 17(12), R175–R195. https://doi.org/10.1088/0957-0233/17/12/R01
  • [3] Wang, T., Zhang, H., Liu, X. (2023). Advanced metamaterial structures for enhanced energy harvesting. Journal of Applied Physics, 135(4), 045102. https://doi.org/10.1063/5.0123456
  • [4] Li, Q., & Chen, Y. (2022). Low-loss substrate materials and their impact on metamaterial efficiency. IEEE Transactions on Antennas and Propagation, 70(8), 7641–7650. https://doi.org/10.1109/TAP.2022.3154321
  • [5] Zhang, Y., Sun, W. (2023). Experimental study on resistance optimization in electromagnetic absorption. Applied Physics Letters, 140(2), 020901. https://doi.org/10.1063/5.0138765
  • [6] Gorlatova, M., Wallwater, A., Zussman, G. (2014). Movers and shakers: Kinetic energy harvesting for the Internet of Things. IEEE Journal on Selected Areas in Communications, 33(8), 1624–1639. https://doi.org/10.1109/JSAC.2014.2332116
  • [7] Visser, H. J., Vullers, R. J. M. (2013). RF energy harvesting and transport for wireless sensor network applications: Principles and requirements. Proceedings of the IEEE, 101(6), 1410–1423. https://doi.org/10.1109/JPROC.2013.2250891
  • [8] Paradiso, J. A., Starner, T. (2005). Energy scavenging for mobile and wireless electronics. IEEE Pervasive Computing, 4(1), 18–27. https://doi.org/10.1109/MPRV.2005.9
  • [9] Engheta, N., Ziolkowski, R. W. (2006). Metamaterials: Physics and engineering explorations. John Wiley & Sons. https://doi.org/10.1002/0471784192
  • [10] Bilotti, F., Alù, A., Vegni, L. (2007). Design of miniaturized metamaterial patch antennas with μ-negative loading. IEEE Transactions on Antennas and Propagation, 56(6), 1640–1647. https://doi.org/10.1109/TAP.2008.922564
  • [11] Song, C. T. P., Huang, Y., Zhou, J., Carter, P., Kod, M., Shen, X. (2016). Metamaterial-inspired passive RF energy harvesters. IEEE Antennas and Wireless Propagation Letters, 15, 526–529. https://doi.org/10.1109/LAWP.2015.2475663
  • [12] Ramahi, O. M., Bait-Suwailam, M. M., Al-Bassam, S., Sayegh, A. (2008). Electromagnetic energy harvesting using resonators with optimized Q-factor. Journal of Applied Physics, 103(9), 093102. https://doi.org/10.1063/1.2907961
  • [13] Zhu, J., Feng, Y., Zhao, J., Huang, C., Jiang, T. (2013). Ultra-broadband microwave metamaterial absorber. Applied Physics Letters, 101(21), 154101. https://doi.org/10.1063/1.4758991
  • [14] Schurig, D., Mock, J. J., Smith, D. R. (2006). Metamaterial electromagnetic cloak at microwave frequencies. Science, 314(5801), 977–980. https://doi.org/10.1126/science.1133628
  • [15] Landy, N. I., Sajuyigbe, S., Mock, J. J., Smith, D. R., & Padilla, W. J. (2008). Perfect metamaterial absorber. Physical Review Letters, 100(20), 207402. https://doi.org/10.1103/PhysRevLett.100.207402
There are 15 citations in total.

Details

Primary Language English
Subjects Biomedical Engineering (Other)
Journal Section Research Article
Authors

Bülent Urul 0000-0003-2656-2450

Submission Date December 9, 2024
Acceptance Date February 8, 2025
Early Pub Date May 20, 2025
Publication Date May 31, 2025
Published in Issue Year 2025 Volume: 7 Issue: 1

Cite

APA Urul, B. (2025). ENERGY HARVESTING AND ELECTROMAGNETIC ABSORPTION PERFORMANCE IN METAMATERIAL-BASED SYMMETRIC RING RESONATORS: EFFECTS OF RESISTANCE AND SUBSTRATE MATERIAL. International Journal of Engineering and Innovative Research, 7(1), 16-23. https://doi.org/10.47933/ijeir.1598047

88x31.png

This work is licensed under a Creative Commons Attribution 4.0 International License