Research Article
BibTex RIS Cite

Anaerobic digestion of cattle manure after ultrasonic pretreatment under different conditions

Year 2022, Volume: 4 Issue: 3, 178 - 190, 01.10.2022
https://doi.org/10.47933/ijeir.1165272

Abstract

The ultrasonic pretreatment (UP) is one of the common pretreatment technologies applied in biogas production. In this study, UP was applied to cattle manure (CM) with different intensity and different intervals. The UP was applied to the intensity of 0.1, 0.5, 1.0, 3.0, 5.0 and 10.0 W/mL and respectively for each pretreatment intensity 5, 10, 20, 30 for 60 min. Biogas production was carried out in batch reactors under mesophilic conditions (30 ± 2 °C) and 5.0 % total solids (TS). As a result of the UP, soluble chemical oxygen demand removal increased from 41.0 % to maximum 67.0 %. The biogas production in this reactor was 270.6 mL/g TS. Thus, 59.0 % incremental biogas production was realized. In this reactor, cellulose and hemicellulose removal was 20.6 % and 16.9 %, respectively. The UP led to the dissolution of cellulose and hemicellulose molecules in water at the anaerobic digestion stage. The optimum times of 0.1, 0.5, 1.0, 3.0, 5.0 and 10.0 W/mL pretreatments were determined. All reactors successfully fitted to the modified Logistic model and the modified Von Bertalanffy model.

References

  • [1] Y. Chen, J.J. Cheng, K.S. Creamer, Inhibition of anaerobic digestion process: a review, Bioresour Technol 99(10) (2008) 4044-4064.
  • [2] H. Şenol, E.A. Elibol, Ü. Açıkel, M. Şenol, Primary Biomass Sources for Biogas Production in Turkey, BEU Journal of Science 6(2) (2017) 81-92.
  • [3] C. Cavinato, F. Fatone, D. Bolzonella, P. Pavan, Thermophilic anaerobic co-digestion of cattle manure with agro-wastes and energy crops: comparison of pilot and full scale experiences, Bioresour Technol. 101(2) (2010) 545-550.
  • [4] K. Boe, I. Angelidaki, Serial CSTR digester configuration for improving biogas production from manure, Water Res. 43(1) (2009) 166-172.
  • [5] I. Angelidaki, L. Ellegaard, biotechnology, Codigestion of manure and organic wastes in centralized biogas plants, Appl. Biochem. Biotechnol 109(1-3) (2003) 95-105.
  • [6] R.J. Patinvoh, O.A. Osadolor, K. Chandolias, I.S. Horváth, M. Taherzadeh, Innovative pretreatment strategies for biogas production, Bioresour. Technol. 224 (2017) 13-24.
  • [7] A. Tiehm, K. Nickel, M. Zellhorn, U. Neis, Ultrasonic waste activated sludge disintegration for improving anaerobic stabilization, Water res. 35(8) (2001) 2003-2009.
  • [8] X. Xie, T.S. Mikkelsen, A. Gnirke, K. Lindblad-Toh, M. Kellis, E.S. Lander, Systematic discovery of regulatory motifs in conserved regions of the human genome, including thousands of CTCF insulator sites, Proc. Natl. Acad. Sci. 104(17) (2007) 7145-7150.
  • [9] S. Zou, H. Wang, X. Wang, S. Zhou, X. Li, Y. Feng, Application of experimental design techniques in the optimization of the ultrasonic pretreatment time and enhancement of methane production in anaerobic co-digestion, Appl Energy 179 (2016) 191-202.
  • [10] S. Pilli, P. Bhunia, S. Yan, R. LeBlanc, R. Tyagi, R. Surampalli, Ultrasonic pretreatment of sludge: a review, Ultrason. Sonochem. 18(1) (2011) 1-18.
  • [11] J. Kim, C. Park, T.-H. Kim, M. Lee, S. Kim, S.-W. Kim, J. Lee, Effects of various pretreatments for enhanced anaerobic digestion with waste activated sludge, J. Biosci. Bioeng 95(3) (2003) 271-275.
  • [12] F. Hogan, S. Mormede, P. Clark, M. Crane, Ultrasonic sludge treatment for enhanced anaerobic digestion, Water Sci. Technol. 50(9) (2004) 25-32.
  • [13] C. Braguglia, M. Gagliano, S. Rossetti, High frequency ultrasound pretreatment for sludge anaerobic digestion: effect on floc structure and microbial population, Bioresour Technol 110 (2012) 43-49.
  • [14] A. Cesaro, V. Naddeo, V. Amodio, V. Belgiorno, Enhanced biogas production from anaerobic codigestion of solid waste by sonolysis, Ultrason. Sonochem. 19(3) (2012) 596-600.
  • [15] S. Zou, X. Wang, Y. Chen, H. Wan, Y. Feng, Management, Enhancement of biogas production in anaerobic co-digestion by ultrasonic pretreatment, Energy Convers. Manag 112 (2016) 226-235.
  • [16] S. Luste, S. Luostarinen, Enhanced methane production from ultrasound pre-treated and hygienized dairy cattle slurry, Waste Manage. 31(9-10) (2011) 2174-2179.
  • [17] H. Şenol, M.A. Dereli̇, F. Özbilgin, Investigation of the distribution of bovine manure-based biomethane potential using an artificial neural network in Turkey to 2030, Renewable and Sustainable Energy Reviews 149 (2021) 111338.
  • [18] G. Zhang, C. Li, D. Ma, Z. Zhang, G. Xu, Anaerobic digestion of antibiotic residue in combination with hydrothermal pretreatment for biogas, Bioresour. Technol. 192 (2015) 257-265. [19] H. Şenol, Methane yield prediction of ultrasonic pretreated sewage sludge by means of an artificial neural network, Energy 215 (2021) 119173.
  • [20] A. APhA, WPCF, 1992 Standard Methods for the Examination of Water and Wastewater, Washington, 1988.
  • [21] P.v. Van Soest, J. Robertson, B. Lewis, Methods for dietary fiber, neutral detergent fiber, and nonstarch polysaccharides in relation to animal nutrition, J. Dairy Sci. 74(10) (1991) 3583-3597.
  • [22] A. ASTM, Standard test methods for chemical oxygen demand (dichromate oxygen demand) of water, (2002).
  • [23] R.J. Beverton, S.J. Holt, On the dynamics of exploited fish populations, Springer Science & Business Media2012.
  • [24] S.J.B.m.B.m. Sperandei, Understanding logistic regression analysis, 24(1) (2014) 12-18.
  • [25] V. Oda, M. Korkmaz, E. Özkurt, Some sigmoidal models used in estimating growth curve and biological parameters obtained : bertalanffy pattern sample Ordu Univ. J. Sci. Tech. 6(1) (2016).
  • [26] M.R. Salsabil, A. Prorot, M. Casellas, C. Dagot, Pre-treatment of activated sludge: Effect of sonication on aerobic and anaerobic digestibility, Chem Eng J. 148(2-3) (2009) 327-335.
  • [27] S. Şahinkaya, M.F. Sevimli, Sono-thermal pre-treatment of waste activated sludge before anaerobic digestion, Ultrason. Sonochem. 20(1) (2013) 587-594.
  • [28] N.A. Oz, A.C. Uzun, Ultrasound pretreatment for enhanced biogas production from olive mill wastewater, Ultrason. Sonochem. 22 (2015) 565-572.
  • [29] P. Ormaechea, L. Castrillón, B. Suárez-Peña, L. Megido, Y. Fernández-Nava, L. Negral, E. Marañón, J. Rodríguez-Iglesias, Enhancement of biogas production from cattle manure pretreated and/or co-digested at pilot-plant scale. Characterization by SEM, Renew Energ 126 (2018) 897-904.
  • [30] N.A. Oz, C.C. Yarimtepe, Ultrasound assisted biogas production from landfill leachate, Waste Manage 34(7) (2014) 1165-1170.
  • [31] B. Deepanraj, V. Sivasubramanian, S. Jayaraj, Effect of substrate pretreatment on biogas production through anaerobic digestion of food waste, Int J Hydrogen Energ. 42(42) (2017) 26522-26528.
  • [32] E. Naran, U.A. Toor, D.-J. Kim, Effect of pretreatment and anaerobic co-digestion of food waste and waste activated sludge on stabilization and methane production, Int. Biodeterior. Biodegradation 113 (2016) 17-21.
  • [33] J. Laurent, M. Casellas, C. Dagot, Heavy metals uptake by sonicated activated sludge: relation with floc surface properties, J Hazard Mater. 162(2-3) (2009) 652-660.
  • [34] M. Işik, D.T. Sponza, Substrate removal kinetics in an upflow anaerobic sludge blanket reactor decolorising simulated textile wastewater, Process Biochem 40(3-4) (2005) 1189-1198.
  • [35] I. Syaichurrozi, R. Rusdi, S. Dwicahyanto, Y.S. Toron, Biogas production from co-digestion vinasse waste and tofu-prosessing waste water and knetics, Int. J. Renew. Energy Res 6(3) (2016) 1057-1070.
  • [36] A.A. Rajput, C. Visvanathan, Effect of thermal pretreatment on chemical composition, physical structure and biogas production kinetics of wheat straw, J Environ Manage 221 (2018) 45-52.
  • [37] B. Najafi, S.F. Ardabili, Recycling, Application of ANFIS, ANN, and logistic methods in estimating biogas production from spent mushroom compost (SMC), Resour Conserv Recy. 133 (2018) 169-178.
  • [38] M. Martín, R. Fernández, M. Gutiérrez, J. Siles, Thermophilic anaerobic digestion of pre-treated orange peel: Modelling of methane production, Process Saf Environ. 117 (2018) 245-253.

Farklı koşullar altında ultrasonik ön işlemden sonra sığır gübresinin anaerobik sindirimi

Year 2022, Volume: 4 Issue: 3, 178 - 190, 01.10.2022
https://doi.org/10.47933/ijeir.1165272

Abstract

Ultrasonik ön arıtma (UP), biyogaz üretiminde uygulanan yaygın ön arıtma teknolojilerinden biridir. Bu çalışmada sığır gübresine (CM) farklı yoğunluk ve farklı aralıklarla UP uygulanmıştır. UP, 0.1, 0.5, 1.0, 3.0, 5.0 ve 10.0 W/mL'lik yoğunluğa ve sırasıyla her bir ön-muamele yoğunluğu için 5, 10, 20, 30 60 dakika boyunca uygulandı. Biyogaz üretimi, kesikli reaktörlerde mezofilik koşullar (30 ± 2 °C) ve % 5.0 toplam katı madde (TS) altında gerçekleştirilmiştir. UP'nin bir sonucu olarak, çözünür kimyasal oksijen ihtiyacının giderilmesi %41.0'dan maksimum %67.0'a yükseldi. Bu reaktördeki biyogaz üretimi 270.6 mL/g TS idi. Böylece %59,0 artımlı biyogaz üretimi gerçekleştirilmiştir. Bu reaktörde selüloz ve hemiselüloz giderimi sırasıyla %20,6 ve %16,9 olmuştur. UP, anaerobik sindirim aşamasında suda selüloz ve hemiselüloz moleküllerinin çözünmesine yol açtı. 0.1, 0.5, 1.0, 3.0, 5.0 ve 10.0 W/mL ön işlemlerin optimum süreleri belirlendi. Tüm reaktörler, değiştirilmiş Lojistik modeline ve değiştirilmiş Von Bertalanffy modeline başarıyla uydu.

References

  • [1] Y. Chen, J.J. Cheng, K.S. Creamer, Inhibition of anaerobic digestion process: a review, Bioresour Technol 99(10) (2008) 4044-4064.
  • [2] H. Şenol, E.A. Elibol, Ü. Açıkel, M. Şenol, Primary Biomass Sources for Biogas Production in Turkey, BEU Journal of Science 6(2) (2017) 81-92.
  • [3] C. Cavinato, F. Fatone, D. Bolzonella, P. Pavan, Thermophilic anaerobic co-digestion of cattle manure with agro-wastes and energy crops: comparison of pilot and full scale experiences, Bioresour Technol. 101(2) (2010) 545-550.
  • [4] K. Boe, I. Angelidaki, Serial CSTR digester configuration for improving biogas production from manure, Water Res. 43(1) (2009) 166-172.
  • [5] I. Angelidaki, L. Ellegaard, biotechnology, Codigestion of manure and organic wastes in centralized biogas plants, Appl. Biochem. Biotechnol 109(1-3) (2003) 95-105.
  • [6] R.J. Patinvoh, O.A. Osadolor, K. Chandolias, I.S. Horváth, M. Taherzadeh, Innovative pretreatment strategies for biogas production, Bioresour. Technol. 224 (2017) 13-24.
  • [7] A. Tiehm, K. Nickel, M. Zellhorn, U. Neis, Ultrasonic waste activated sludge disintegration for improving anaerobic stabilization, Water res. 35(8) (2001) 2003-2009.
  • [8] X. Xie, T.S. Mikkelsen, A. Gnirke, K. Lindblad-Toh, M. Kellis, E.S. Lander, Systematic discovery of regulatory motifs in conserved regions of the human genome, including thousands of CTCF insulator sites, Proc. Natl. Acad. Sci. 104(17) (2007) 7145-7150.
  • [9] S. Zou, H. Wang, X. Wang, S. Zhou, X. Li, Y. Feng, Application of experimental design techniques in the optimization of the ultrasonic pretreatment time and enhancement of methane production in anaerobic co-digestion, Appl Energy 179 (2016) 191-202.
  • [10] S. Pilli, P. Bhunia, S. Yan, R. LeBlanc, R. Tyagi, R. Surampalli, Ultrasonic pretreatment of sludge: a review, Ultrason. Sonochem. 18(1) (2011) 1-18.
  • [11] J. Kim, C. Park, T.-H. Kim, M. Lee, S. Kim, S.-W. Kim, J. Lee, Effects of various pretreatments for enhanced anaerobic digestion with waste activated sludge, J. Biosci. Bioeng 95(3) (2003) 271-275.
  • [12] F. Hogan, S. Mormede, P. Clark, M. Crane, Ultrasonic sludge treatment for enhanced anaerobic digestion, Water Sci. Technol. 50(9) (2004) 25-32.
  • [13] C. Braguglia, M. Gagliano, S. Rossetti, High frequency ultrasound pretreatment for sludge anaerobic digestion: effect on floc structure and microbial population, Bioresour Technol 110 (2012) 43-49.
  • [14] A. Cesaro, V. Naddeo, V. Amodio, V. Belgiorno, Enhanced biogas production from anaerobic codigestion of solid waste by sonolysis, Ultrason. Sonochem. 19(3) (2012) 596-600.
  • [15] S. Zou, X. Wang, Y. Chen, H. Wan, Y. Feng, Management, Enhancement of biogas production in anaerobic co-digestion by ultrasonic pretreatment, Energy Convers. Manag 112 (2016) 226-235.
  • [16] S. Luste, S. Luostarinen, Enhanced methane production from ultrasound pre-treated and hygienized dairy cattle slurry, Waste Manage. 31(9-10) (2011) 2174-2179.
  • [17] H. Şenol, M.A. Dereli̇, F. Özbilgin, Investigation of the distribution of bovine manure-based biomethane potential using an artificial neural network in Turkey to 2030, Renewable and Sustainable Energy Reviews 149 (2021) 111338.
  • [18] G. Zhang, C. Li, D. Ma, Z. Zhang, G. Xu, Anaerobic digestion of antibiotic residue in combination with hydrothermal pretreatment for biogas, Bioresour. Technol. 192 (2015) 257-265. [19] H. Şenol, Methane yield prediction of ultrasonic pretreated sewage sludge by means of an artificial neural network, Energy 215 (2021) 119173.
  • [20] A. APhA, WPCF, 1992 Standard Methods for the Examination of Water and Wastewater, Washington, 1988.
  • [21] P.v. Van Soest, J. Robertson, B. Lewis, Methods for dietary fiber, neutral detergent fiber, and nonstarch polysaccharides in relation to animal nutrition, J. Dairy Sci. 74(10) (1991) 3583-3597.
  • [22] A. ASTM, Standard test methods for chemical oxygen demand (dichromate oxygen demand) of water, (2002).
  • [23] R.J. Beverton, S.J. Holt, On the dynamics of exploited fish populations, Springer Science & Business Media2012.
  • [24] S.J.B.m.B.m. Sperandei, Understanding logistic regression analysis, 24(1) (2014) 12-18.
  • [25] V. Oda, M. Korkmaz, E. Özkurt, Some sigmoidal models used in estimating growth curve and biological parameters obtained : bertalanffy pattern sample Ordu Univ. J. Sci. Tech. 6(1) (2016).
  • [26] M.R. Salsabil, A. Prorot, M. Casellas, C. Dagot, Pre-treatment of activated sludge: Effect of sonication on aerobic and anaerobic digestibility, Chem Eng J. 148(2-3) (2009) 327-335.
  • [27] S. Şahinkaya, M.F. Sevimli, Sono-thermal pre-treatment of waste activated sludge before anaerobic digestion, Ultrason. Sonochem. 20(1) (2013) 587-594.
  • [28] N.A. Oz, A.C. Uzun, Ultrasound pretreatment for enhanced biogas production from olive mill wastewater, Ultrason. Sonochem. 22 (2015) 565-572.
  • [29] P. Ormaechea, L. Castrillón, B. Suárez-Peña, L. Megido, Y. Fernández-Nava, L. Negral, E. Marañón, J. Rodríguez-Iglesias, Enhancement of biogas production from cattle manure pretreated and/or co-digested at pilot-plant scale. Characterization by SEM, Renew Energ 126 (2018) 897-904.
  • [30] N.A. Oz, C.C. Yarimtepe, Ultrasound assisted biogas production from landfill leachate, Waste Manage 34(7) (2014) 1165-1170.
  • [31] B. Deepanraj, V. Sivasubramanian, S. Jayaraj, Effect of substrate pretreatment on biogas production through anaerobic digestion of food waste, Int J Hydrogen Energ. 42(42) (2017) 26522-26528.
  • [32] E. Naran, U.A. Toor, D.-J. Kim, Effect of pretreatment and anaerobic co-digestion of food waste and waste activated sludge on stabilization and methane production, Int. Biodeterior. Biodegradation 113 (2016) 17-21.
  • [33] J. Laurent, M. Casellas, C. Dagot, Heavy metals uptake by sonicated activated sludge: relation with floc surface properties, J Hazard Mater. 162(2-3) (2009) 652-660.
  • [34] M. Işik, D.T. Sponza, Substrate removal kinetics in an upflow anaerobic sludge blanket reactor decolorising simulated textile wastewater, Process Biochem 40(3-4) (2005) 1189-1198.
  • [35] I. Syaichurrozi, R. Rusdi, S. Dwicahyanto, Y.S. Toron, Biogas production from co-digestion vinasse waste and tofu-prosessing waste water and knetics, Int. J. Renew. Energy Res 6(3) (2016) 1057-1070.
  • [36] A.A. Rajput, C. Visvanathan, Effect of thermal pretreatment on chemical composition, physical structure and biogas production kinetics of wheat straw, J Environ Manage 221 (2018) 45-52.
  • [37] B. Najafi, S.F. Ardabili, Recycling, Application of ANFIS, ANN, and logistic methods in estimating biogas production from spent mushroom compost (SMC), Resour Conserv Recy. 133 (2018) 169-178.
  • [38] M. Martín, R. Fernández, M. Gutiérrez, J. Siles, Thermophilic anaerobic digestion of pre-treated orange peel: Modelling of methane production, Process Saf Environ. 117 (2018) 245-253.
There are 37 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Research Articles
Authors

Halil Şenol 0000-0003-3056-5013

Early Pub Date October 1, 2022
Publication Date October 1, 2022
Acceptance Date September 23, 2022
Published in Issue Year 2022 Volume: 4 Issue: 3

Cite

APA Şenol, H. (2022). Anaerobic digestion of cattle manure after ultrasonic pretreatment under different conditions. International Journal of Engineering and Innovative Research, 4(3), 178-190. https://doi.org/10.47933/ijeir.1165272

88x31.png

This work is licensed under a Creative Commons Attribution 4.0 International License