Research Article
BibTex RIS Cite

Fatigue Analysis on a Newly Designed Hip Implant with Finite Element Method

Year 2024, Volume: 6 Issue: 3, 162 - 178, 26.10.2024
https://doi.org/10.47933/ijeir.1540604

Abstract

This study used Finite Element Analysis (FEA) and Reverse Engineering (RE) methods to assess the fatigue performance of an originally designed cementless hip implant. The implant prototype was initially scanned using 3D scanning technology, and a finite element model was created. The implant was analyzed under dynamic loads for six different biomaterials commonly used, namely Ti-6Al-4V (Grade5), ASTM F3046 (Ti-3Al-2.5V), ASTM F75 (CoCr), ASTM F562(MP35N), ASTM F136(Ti6Al4V ELI), ASTM F67 (Ti Grade 4), and the fatigue life was evaluated. The results showed that the ASTM F75 (CoCr) implant had the highest stress and the ASTM F67 (Ti Grade 4) implant had the lowest stress. Also, Ti6Al4V (Grade 5) implant is more resistant to fatigue than their counterparts made from ASTM F75 (CoCr), ASTM F136 (Ti6Al4V ELI) and ASTM 3046 (Ti-3Al-2.5V).

References

  • [1] Rubak, T. S., Svendsen, S. W., Søballe, K., & Frost, P. (2014). Total Hip Replacement due to Primary Osteoarthritis in Relation to Cumulative Occupational Exposures and Lifestyle Factors: A Nationwide Nested Case–Control Study. Arthritis Care & Research, 66(10), 1496–1505. https://doi.org/10.1002/acr.22326
  • [2] Dopico-González, C., New, A. M., & Browne, M. (2010). Probabilistic finite element analysis of the uncemented hip replacement—effect of femur characteristics and implant design geometry. Journal of Biomechanics, 43(3), 512–520. https://doi.org/10.1016/j.jbiomech.2009.09.039
  • [3] Ebramzadeh, E., Normand, P. L., Sangiorgio, S. N., Llinás, A., Gruen, T. A., McKellop, H. A., & Sarmiento, A. (2003). Long-term radiographic changes in cemented total hip arthroplasty with six designs of femoral components. Biomaterials, 24(19), 3351–3363. https://doi.org/10.1016/S0142-9612(03)00187-X
  • [4] Joshi, T., Sharma, R., Mittal, V. K., Gupta, V., & Krishan, G. (2022). Dynamic fatigue behavior of hip joint under patient specific loadings. International Journal of Automotive and Mechanical Engineering, 19(3), 10014–10027. https://doi.org/10.15282/ijame.19.3.2022.13.0773
  • [5] CIHI. (2022). Hip and Knee Replacements in Canada: CJRR Annual Report, 2020–2021 — Updated September 2022. Canadian Institute for Health Information.
  • [6] Kärrholm, J., Rogmark, C., Nauclér, E., Nåtman, J., Vinblad, J., Mohaddes, M., & Rolfson, O. (2019). Swedish Hip Arthroplasty Register. Department of Orthopaedics, Sahlgrenska University Hospital.
  • [7] Bozic, K. J., Kurtz, S. M., Lau, E., Ong, K., Vail, T. P., & Berry, D. J. (2009). The epidemiology of revision total hip arthroplasty in the United States. The Journal of Bone and Joint Surgery. American Volume, 91(1), 128–133. https://doi.org/10.2106/JBJS.H.00155
  • [8] OECD. (2023). Health at a Glance 2023: OECD Indicators. Paris: Organisation for Economic Co-operation and Development. Retrieved from https://www.oecd-ilibrary.org/social-issues-migration-health/health-at-a-glance-2023_7a7afb35-en
  • [9] Woiczinski, M., Maas, A., Grupp, T., Thorwächter, C., Santos, I., Müller, P. E., … Steinbrück, A. (2020). Realitätsnahe Finite-Elemente-Simulation in der präklinischen Testung von Knie- und Hüftimplantaten. Der Orthopäde, 49(12), 1060–1065. https://doi.org/10.1007/s00132-020-04025-0
  • [10] Marsh, M., & Newman, S. (2021). Trends and developments in hip and knee arthroplasty technology. Journal of Rehabilitation and Assistive Technologies Engineering, 8, 2055668320952043. https://doi.org/10.1177/2055668320952043
  • [11] Griza, S., Kwietniewski, C., Tarnowski, G. A., Bertoni, F., Reboh, Y., Strohaecker, T. R., & Baumvol, I. J. R. (2008). Fatigue failure analysis of a specific total hip prosthesis stem design. International Journal of Fatigue, 30(8), 1325–1332. https://doi.org/10.1016/j.ijfatigue.2007.11.005
  • [12] Eachempati, K. K., Dannana, C. S., Apsingi, S., Ponnala, V. K., Boyapati, G., & Parameswaran, A. (2020). Trunnion fracture of femoral prosthesis following a large metal-on-metal uncemented total hip arthroplasty: a case report. Arthroplasty (London, England), 2(1), 32. https://doi.org/10.1186/s42836-020-00055-3
  • [13] Grupp, T. M., Weik, T., Bloemer, W., & Knaebel, H.-P. (2010). Modular titanium alloy neck adapter failures in hip replacement-failure mode analysis and influence of implant material. BMC musculoskeletal disorders, 11, 3. https://doi.org/10.1186/1471-2474-11-3
  • [14] Janssen, D., Aquarius, R., Stolk, J., & Verdonschot, N. (2005). Finite-element analysis of failure of the Capital Hip designs. The Journal of Bone & Joint Surgery British Volume, 87-B(11), 1561–1567. https://doi.org/10.1302/0301-620X.87B11.16358
  • [15] Łapaj, Ł., Woźniak, W., Wiśniewski, T., Rozwalka, J., Paczesny, Ł., Zabrzyński, J., … Kruczyński, J. (2019). Breakage of metal hip arthroplasty components: Retrieval and structural analysis. Bio-Medical Materials and Engineering, 30(3), 297–308. https://doi.org/10.3233/BME-191053
  • [16] Mierzejewska, Ż. A. (2015). Case Study and Failure Analysis of a total hip Stem Fracture. Advances in Materials Science, 15(2), 5–13.
  • [17] Fouchereau, R., Celeux, G., & Pamphile, P. (2014). Probabilistic modeling of S–N curves. International Journal of Fatigue, 68, 217–223. https://doi.org/10.1016/j.ijfatigue.2014.04.015
  • [18] Pekedis, M., & Yildiz, H. (2011). Comparison of fatigue behaviour of eight different hip stems: a numerical and experimental study. Journal of Biomedical Science and Engineering, 4(10), 643–650. https://doi.org/10.4236/jbise.2011.410080
  • [19] Şik, A., Önder, M., & Korkmaz, M. S. (2015). Taşit jantlarinin yapisal anali̇z i̇le yorulma dayaniminin beli̇rlenmesi̇. Gazi University Journal of Science Part C: Design and Technology, 3(3), 565–574.
  • [20] Ploeg, H.-L., Bürgi, M., & Wyss, U. P. (2009). Hip stem fatigue test prediction. International Journal of Fatigue, 31(5), 894–905. https://doi.org/10.1016/j.ijfatigue.2008.10.005
  • [21] Zameer, S., & Haneef, M. (2015). Fatigue life estimation of artificial hip joint model using finite element method. Materials Today: Proceedings, 2(4), 2137–2145. https://doi.org/10.1016/j.matpr.2015.07.220
  • [22] Cadario, A., & Alfredsson, B. (2007). Fatigue growth of short cracks in Ti-17: Experiments and simulations. Engineering Fracture Mechanics, 74(15), 2293–2310. https://doi.org/10.1016/j.engfracmech.2006.11.016
  • [23] ASTM F2996-20. (2020). Standard Practice for Finite Element Analysis (FEA) of Non-Modular Metallic Orthopaedic Hip Femoral Stems. PA, USA. Retrieved from https://www.astm.org/f2996-20.html
  • [24] ISO 7206-4:2010. (2010). Implants for surgery - Partial and total hip joint prostheses - Part 4: Determination of endurance properties and performance of stemmed femoral components. Geneva, Switzerland. Retrieved from https://www.iso.org/standard/42769.html
  • [25] ISO 7206-6:2013. (2013). Implants for surgery - Partial and total hip joint prostheses - Part 6: Endurance properties testing and performance requirements of neck region of stemmed femoral components. Geneva, Switzerland. Retrieved from https://www.iso.org/standard/51186.html
  • [26] Senalp, A. Z., Kayabasi, O., & Kurtaran, H. (2007). Static, dynamic and fatigue behavior of newly designed stem shapes for hip prosthesis using finite element analysis. Materials & Design, 28(5), 1577–1583. https://doi.org/10.1016/j.matdes.2006.02.015
  • [27] Carbone, V., Palazzin, A., Bisotti, M. A., Bursi, R., & Emili, L. (2020). An integrated cloud platform to perform in silico standard testing for orthopaedic devices. Orthopaedic Proceedings, 102-B(SUPP_11), 2–2. https://doi.org/10.1302/1358-992X.2020.11.002
  • [28] Joshi, T., & Gupta, G. (2021). Effect of dynamic loading on hip implant using finite element method. Materials Today: Proceedings, 46, 10211–10216. https://doi.org/10.1016/j.matpr.2020.11.378
  • [29] Chethan, K. N., Zuber, M., Bhat N, S., & Shenoy B, S. (2020). Optimized trapezoidal-shaped hip implant for total hip arthroplasty using finite element analysis. Cogent Engineering, 7(1), 1719575. https://doi.org/10.1080/23311916.2020.1719575
  • [30] Babić, M., Verić, O., Božić, Ž., & Sušić, A. (2020). Finite element modelling and fatigue life assessment of a cemented total hip prosthesis based on 3D scanning. Engineering Failure Analysis, 113, 104536. https://doi.org/10.1016/j.engfailanal.2020.104536
  • [31] Knight, S. R., Aujla, R., & Biswas, S. P. (2011). Total Hip Arthroplasty - over 100 years of operative history. Orthopedic Reviews, 3(2), e16. https://doi.org/10.4081/or.2011.e16
  • [32] Desai, C., Hirani, H., & Chawla, A. (2015). Life Estimation of Hip Joint Prosthesis. Journal of The Institution of Engineers (India): Series C, 96(3), 261–267. https://doi.org/10.1007/s40032-014-0159-4
  • [33] Abdullah, K. (2010). Study of Factors Affecting Taper Joint Failures in Modular Hip Implant Using Finite Element Modelling. In Modeling Simulation and Optimization - Focus on Applications. IntechOpen. https://doi.org/10.5772/8973
  • [34] Pianigiani, S., & Alemani, F. (2020). Evaluating the effects of experimental settings during iso 7206-4 endurance and performace tests: a finite element analysis. Journal of Mechanics in Medicine and Biology, 20, 1– 13. https://doi.org/10.1142/S0219519420500062
  • [35] Simoneau, C., Terriault, P., Jetté, B., Dumas, M., & Brailovski, V. (2017). Development of a porous metallic femoral stem: Design, manufacturing, simulation and mechanical testing. Materials & Design, 114, 546–556. https://doi.org/10.1016/j.matdes.2016.10.064
  • [36] Ikhsan, J., Prabowo, A. R., & Sohn, J. M. (2020). Investigation of meshing strategy on mechanical behaviour of hip stem implant design using FEA. Open Engineering, 10(1), 769–775. https://doi.org/10.1515/eng-2020-0087
  • [37] Pimenta, A. R., Tavares, S. S. M., Dias, D. F., Correa, S. R., Sobreiro, A. L., & Diniz, M. G. (2021). Failure analysis of a titanium hip prosthesis. Journal of Failure Analysis and Prevention, 21(1), 28–35. https://doi.org/10.1007/s11668-020-01041-2
  • [38] Total Materia. (2024, October 9). Titanium and Titanium Alloys. Retrieved from https://www.totalmateria.com/en-us/articles/titanium-and-titanium-alloys/
  • [39] Total Materia. (2024). ASTM F75 CoCr Alloy Properties. Retrieved from https://www.totalmateria.com/en-us/material/3258457
  • [40] Total Materia. (2024). MP35N Properties. Retrieved from https://www.totalmateria.com/en-us/material/3309632
  • [41] ANSYS 2019. (2019). Engineering Simulation and 3D Design Software. Houston, PA, USA: Ansys Inc.
  • [42] Ashvith, K., Damodaran, B. K., Khan, M. D. A., & Alam, N. (2024). Finite element analysis of hip implants-review. In AIP Conference Proceedings (Vol. 3042, p. 020038). https://doi.org/10.1063/5.0198508
  • [43] Kaya, F., İnce, G., Avcar, M., & Yünlü, L. (2021). Kalça protezi̇ tasariminin sonlu elemanlar yöntemi̇ i̇le stati̇k anali̇zi̇. Mühendislik Bilimleri ve Tasarım Dergisi, 9(1), 199–208. https://doi.org/10.21923/jesd.839995
  • [44] Cho, J.-U., & Lee, E.-J. (2004). A study on fatigue fracture under non-constant load. Journal of the Korean Society of Industry-Academic Technology, 5(4), 286–291.
  • [45] Bader, Q., & Njim, E. (2014). Mean stress correction effects on the fatigue life behavior of steel alloys by using stress life approach theories. International Journal of Emerging Technologies in Learning (iJET), 14.
  • [46] Aghili, S. A., Hassani, K., & Nikkhoo, M. (2021). A finite element study of fatigue load effects on total hip joint prosthesis. Computer Methods in Biomechanics and Biomedical Engineering, 24(14), 1545–1551. https://doi.org/10.1080/10255842.2021.1900133
  • [47] Kayabasi, O., & Ekici, B. (2007). The effects of static, dynamic and fatigue behavior on three-dimensional shape optimization of hip prosthesis by finite element method. Materials & Design, 28(8), 2269–2277. https://doi.org/10.1016/j.matdes.2006.08.012
  • [48] Wimalasiri, D. H. R. J. (2009, January 1). Enhancement of the fatigue performance of Ti-6Al-4V implant products. Ph.D. Thesis. Sheffield Hallam University, United Kingdom. Retrieved from https://ui.adsabs.harvard.edu/abs/2009PhDT.......211W
  • [49] Munteanu, S., Munteanu, D., Gheorghiu, B., Bedo, T., Gabor, C., Cremascoli, P., … Pop, M. A. (2019). Additively manufactured femoral stem topology optimization: case study. Materials Today: Proceedings, 19, 1019–1025. https://doi.org/10.1016/j.matpr.2019.08.016
  • [50] Ghosh, S., Abanteriba, S., Wong, S., Brkljača, R., & Houshyar, S. (2019). Optimisation of grafted phosphorylcholine-based polymer on additively manufactured titanium substrate for hip arthroplasty. Materials Science and Engineering: C, 101, 696–706. https://doi.org/10.1016/j.msec.2019.04.017
  • [51] Campioni, I., Notarangelo, G., Andreaus, U., Ventura, A., & Giacomozzi, C. (2013). Hip Prostheses Computational Modeling: FEM Simulations Integrated with Fatigue Mechanical Tests. In U. Andreaus & D. Iacoviello (Eds.), Biomedical Imaging and Computational Modeling in Biomechanics (pp. 81–108). Dordrecht: Springer Netherlands. https://doi.org/10.1007/978-94-007-4270-3_5
  • [52] Delikanli, Y. E., & Kayacan, M. C. (2019). Design, manufacture, and fatigue analysis of lightweight hip implants. Journal of Applied Biomaterials & Functional Materials, 17(2), 2280800019836830. https://doi.org/10.1177/2280800019836830
  • [53] He, Y., Burkhalter, D., Durocher, D., & Gilbert, J. M. (2018). Solid-Lattice Hip Prosthesis Design: Applying Topology and Lattice Optimization to Reduce Stress Shielding from Hip Implants. Presented at the 2018 Design of Medical Devices Conference, American Society of Mechanical Engineers Digital Collection. https://doi.org/10.1115/DMD2018-6804
  • [54] Joshi, T., Sharma, R., Kumar Mittal, V., & Gupta, V. (2021). Comparative investigation and analysis of hip prosthesis for different bio-compatible alloys. Materials Today: Proceedings, 43, 105–111. https://doi.org/10.1016/j.matpr.2020.11.222
  • [55] Joshi, T., Sharma, R., Mittal, V. K., Gupta, V., & Krishan, G. (2022). Dynamic analysis of hip prosthesis using different biocompatible alloys. ASME Open Journal of Engineering, 1(011001). https://doi.org/10.1115/1.4053417
  • [56] Hosseini, S. (2012). Fatigue of Ti-6Al-4V. In Biomedical Engineering - Technical Applications in Medicine. IntechOpen. https://doi.org/10.5772/45753

Yeni Tasarlanan Bir Kalça Protezinin Sonlu Elemanlar Yöntemi ile Yorulma Analizi

Year 2024, Volume: 6 Issue: 3, 162 - 178, 26.10.2024
https://doi.org/10.47933/ijeir.1540604

Abstract

Bu çalışmada, orijinal olarak tasarlanmış çimentosuz bir kalça implantının yorulma performansını Sonlu Elemanlar Analizi (SEA) ve Tersine Mühendislik (RE) yöntemlerini kullanarak değerlendirmek için araştırma yapılmıştır. İlk olarak, implant prototipi 3D tarama teknolojisi kullanılarak taranmış ve bir sonlu eleman modeli oluşturulmuştur. İmplant, Ti-6Al-4V (Grade5), ASTM F3046 (Ti-3Al-2.5V), ASTM F75 (CoCr), ASTM F562 (MP35N), ASTM F136 (Ti6Al4V ELI), ASTM F67 (Ti Grade 4) olmak üzere yaygın olarak kullanılan altı farklı biyomalzeme için dinamik yükler altında analiz edilmiş ve yorulma ömrü değerlendirilmiştir. Sonuçlar, ASTM F75 (CoCr) implantının en yüksek strese ve ASTM F67 (Ti Grade 4) implantının en düşük strese sahip olduğunu göstermiştir. Ayrıca, Ti6Al4V (Sınıf 5) implant, ASTM F75 (CoCr), ASTM F136 (Ti6Al4V ELI) ve ASTM 3046'dan (Ti-3Al-2.5V) yapılan muadillerine göre yorulmaya karşı daha dayanıklıdır.

References

  • [1] Rubak, T. S., Svendsen, S. W., Søballe, K., & Frost, P. (2014). Total Hip Replacement due to Primary Osteoarthritis in Relation to Cumulative Occupational Exposures and Lifestyle Factors: A Nationwide Nested Case–Control Study. Arthritis Care & Research, 66(10), 1496–1505. https://doi.org/10.1002/acr.22326
  • [2] Dopico-González, C., New, A. M., & Browne, M. (2010). Probabilistic finite element analysis of the uncemented hip replacement—effect of femur characteristics and implant design geometry. Journal of Biomechanics, 43(3), 512–520. https://doi.org/10.1016/j.jbiomech.2009.09.039
  • [3] Ebramzadeh, E., Normand, P. L., Sangiorgio, S. N., Llinás, A., Gruen, T. A., McKellop, H. A., & Sarmiento, A. (2003). Long-term radiographic changes in cemented total hip arthroplasty with six designs of femoral components. Biomaterials, 24(19), 3351–3363. https://doi.org/10.1016/S0142-9612(03)00187-X
  • [4] Joshi, T., Sharma, R., Mittal, V. K., Gupta, V., & Krishan, G. (2022). Dynamic fatigue behavior of hip joint under patient specific loadings. International Journal of Automotive and Mechanical Engineering, 19(3), 10014–10027. https://doi.org/10.15282/ijame.19.3.2022.13.0773
  • [5] CIHI. (2022). Hip and Knee Replacements in Canada: CJRR Annual Report, 2020–2021 — Updated September 2022. Canadian Institute for Health Information.
  • [6] Kärrholm, J., Rogmark, C., Nauclér, E., Nåtman, J., Vinblad, J., Mohaddes, M., & Rolfson, O. (2019). Swedish Hip Arthroplasty Register. Department of Orthopaedics, Sahlgrenska University Hospital.
  • [7] Bozic, K. J., Kurtz, S. M., Lau, E., Ong, K., Vail, T. P., & Berry, D. J. (2009). The epidemiology of revision total hip arthroplasty in the United States. The Journal of Bone and Joint Surgery. American Volume, 91(1), 128–133. https://doi.org/10.2106/JBJS.H.00155
  • [8] OECD. (2023). Health at a Glance 2023: OECD Indicators. Paris: Organisation for Economic Co-operation and Development. Retrieved from https://www.oecd-ilibrary.org/social-issues-migration-health/health-at-a-glance-2023_7a7afb35-en
  • [9] Woiczinski, M., Maas, A., Grupp, T., Thorwächter, C., Santos, I., Müller, P. E., … Steinbrück, A. (2020). Realitätsnahe Finite-Elemente-Simulation in der präklinischen Testung von Knie- und Hüftimplantaten. Der Orthopäde, 49(12), 1060–1065. https://doi.org/10.1007/s00132-020-04025-0
  • [10] Marsh, M., & Newman, S. (2021). Trends and developments in hip and knee arthroplasty technology. Journal of Rehabilitation and Assistive Technologies Engineering, 8, 2055668320952043. https://doi.org/10.1177/2055668320952043
  • [11] Griza, S., Kwietniewski, C., Tarnowski, G. A., Bertoni, F., Reboh, Y., Strohaecker, T. R., & Baumvol, I. J. R. (2008). Fatigue failure analysis of a specific total hip prosthesis stem design. International Journal of Fatigue, 30(8), 1325–1332. https://doi.org/10.1016/j.ijfatigue.2007.11.005
  • [12] Eachempati, K. K., Dannana, C. S., Apsingi, S., Ponnala, V. K., Boyapati, G., & Parameswaran, A. (2020). Trunnion fracture of femoral prosthesis following a large metal-on-metal uncemented total hip arthroplasty: a case report. Arthroplasty (London, England), 2(1), 32. https://doi.org/10.1186/s42836-020-00055-3
  • [13] Grupp, T. M., Weik, T., Bloemer, W., & Knaebel, H.-P. (2010). Modular titanium alloy neck adapter failures in hip replacement-failure mode analysis and influence of implant material. BMC musculoskeletal disorders, 11, 3. https://doi.org/10.1186/1471-2474-11-3
  • [14] Janssen, D., Aquarius, R., Stolk, J., & Verdonschot, N. (2005). Finite-element analysis of failure of the Capital Hip designs. The Journal of Bone & Joint Surgery British Volume, 87-B(11), 1561–1567. https://doi.org/10.1302/0301-620X.87B11.16358
  • [15] Łapaj, Ł., Woźniak, W., Wiśniewski, T., Rozwalka, J., Paczesny, Ł., Zabrzyński, J., … Kruczyński, J. (2019). Breakage of metal hip arthroplasty components: Retrieval and structural analysis. Bio-Medical Materials and Engineering, 30(3), 297–308. https://doi.org/10.3233/BME-191053
  • [16] Mierzejewska, Ż. A. (2015). Case Study and Failure Analysis of a total hip Stem Fracture. Advances in Materials Science, 15(2), 5–13.
  • [17] Fouchereau, R., Celeux, G., & Pamphile, P. (2014). Probabilistic modeling of S–N curves. International Journal of Fatigue, 68, 217–223. https://doi.org/10.1016/j.ijfatigue.2014.04.015
  • [18] Pekedis, M., & Yildiz, H. (2011). Comparison of fatigue behaviour of eight different hip stems: a numerical and experimental study. Journal of Biomedical Science and Engineering, 4(10), 643–650. https://doi.org/10.4236/jbise.2011.410080
  • [19] Şik, A., Önder, M., & Korkmaz, M. S. (2015). Taşit jantlarinin yapisal anali̇z i̇le yorulma dayaniminin beli̇rlenmesi̇. Gazi University Journal of Science Part C: Design and Technology, 3(3), 565–574.
  • [20] Ploeg, H.-L., Bürgi, M., & Wyss, U. P. (2009). Hip stem fatigue test prediction. International Journal of Fatigue, 31(5), 894–905. https://doi.org/10.1016/j.ijfatigue.2008.10.005
  • [21] Zameer, S., & Haneef, M. (2015). Fatigue life estimation of artificial hip joint model using finite element method. Materials Today: Proceedings, 2(4), 2137–2145. https://doi.org/10.1016/j.matpr.2015.07.220
  • [22] Cadario, A., & Alfredsson, B. (2007). Fatigue growth of short cracks in Ti-17: Experiments and simulations. Engineering Fracture Mechanics, 74(15), 2293–2310. https://doi.org/10.1016/j.engfracmech.2006.11.016
  • [23] ASTM F2996-20. (2020). Standard Practice for Finite Element Analysis (FEA) of Non-Modular Metallic Orthopaedic Hip Femoral Stems. PA, USA. Retrieved from https://www.astm.org/f2996-20.html
  • [24] ISO 7206-4:2010. (2010). Implants for surgery - Partial and total hip joint prostheses - Part 4: Determination of endurance properties and performance of stemmed femoral components. Geneva, Switzerland. Retrieved from https://www.iso.org/standard/42769.html
  • [25] ISO 7206-6:2013. (2013). Implants for surgery - Partial and total hip joint prostheses - Part 6: Endurance properties testing and performance requirements of neck region of stemmed femoral components. Geneva, Switzerland. Retrieved from https://www.iso.org/standard/51186.html
  • [26] Senalp, A. Z., Kayabasi, O., & Kurtaran, H. (2007). Static, dynamic and fatigue behavior of newly designed stem shapes for hip prosthesis using finite element analysis. Materials & Design, 28(5), 1577–1583. https://doi.org/10.1016/j.matdes.2006.02.015
  • [27] Carbone, V., Palazzin, A., Bisotti, M. A., Bursi, R., & Emili, L. (2020). An integrated cloud platform to perform in silico standard testing for orthopaedic devices. Orthopaedic Proceedings, 102-B(SUPP_11), 2–2. https://doi.org/10.1302/1358-992X.2020.11.002
  • [28] Joshi, T., & Gupta, G. (2021). Effect of dynamic loading on hip implant using finite element method. Materials Today: Proceedings, 46, 10211–10216. https://doi.org/10.1016/j.matpr.2020.11.378
  • [29] Chethan, K. N., Zuber, M., Bhat N, S., & Shenoy B, S. (2020). Optimized trapezoidal-shaped hip implant for total hip arthroplasty using finite element analysis. Cogent Engineering, 7(1), 1719575. https://doi.org/10.1080/23311916.2020.1719575
  • [30] Babić, M., Verić, O., Božić, Ž., & Sušić, A. (2020). Finite element modelling and fatigue life assessment of a cemented total hip prosthesis based on 3D scanning. Engineering Failure Analysis, 113, 104536. https://doi.org/10.1016/j.engfailanal.2020.104536
  • [31] Knight, S. R., Aujla, R., & Biswas, S. P. (2011). Total Hip Arthroplasty - over 100 years of operative history. Orthopedic Reviews, 3(2), e16. https://doi.org/10.4081/or.2011.e16
  • [32] Desai, C., Hirani, H., & Chawla, A. (2015). Life Estimation of Hip Joint Prosthesis. Journal of The Institution of Engineers (India): Series C, 96(3), 261–267. https://doi.org/10.1007/s40032-014-0159-4
  • [33] Abdullah, K. (2010). Study of Factors Affecting Taper Joint Failures in Modular Hip Implant Using Finite Element Modelling. In Modeling Simulation and Optimization - Focus on Applications. IntechOpen. https://doi.org/10.5772/8973
  • [34] Pianigiani, S., & Alemani, F. (2020). Evaluating the effects of experimental settings during iso 7206-4 endurance and performace tests: a finite element analysis. Journal of Mechanics in Medicine and Biology, 20, 1– 13. https://doi.org/10.1142/S0219519420500062
  • [35] Simoneau, C., Terriault, P., Jetté, B., Dumas, M., & Brailovski, V. (2017). Development of a porous metallic femoral stem: Design, manufacturing, simulation and mechanical testing. Materials & Design, 114, 546–556. https://doi.org/10.1016/j.matdes.2016.10.064
  • [36] Ikhsan, J., Prabowo, A. R., & Sohn, J. M. (2020). Investigation of meshing strategy on mechanical behaviour of hip stem implant design using FEA. Open Engineering, 10(1), 769–775. https://doi.org/10.1515/eng-2020-0087
  • [37] Pimenta, A. R., Tavares, S. S. M., Dias, D. F., Correa, S. R., Sobreiro, A. L., & Diniz, M. G. (2021). Failure analysis of a titanium hip prosthesis. Journal of Failure Analysis and Prevention, 21(1), 28–35. https://doi.org/10.1007/s11668-020-01041-2
  • [38] Total Materia. (2024, October 9). Titanium and Titanium Alloys. Retrieved from https://www.totalmateria.com/en-us/articles/titanium-and-titanium-alloys/
  • [39] Total Materia. (2024). ASTM F75 CoCr Alloy Properties. Retrieved from https://www.totalmateria.com/en-us/material/3258457
  • [40] Total Materia. (2024). MP35N Properties. Retrieved from https://www.totalmateria.com/en-us/material/3309632
  • [41] ANSYS 2019. (2019). Engineering Simulation and 3D Design Software. Houston, PA, USA: Ansys Inc.
  • [42] Ashvith, K., Damodaran, B. K., Khan, M. D. A., & Alam, N. (2024). Finite element analysis of hip implants-review. In AIP Conference Proceedings (Vol. 3042, p. 020038). https://doi.org/10.1063/5.0198508
  • [43] Kaya, F., İnce, G., Avcar, M., & Yünlü, L. (2021). Kalça protezi̇ tasariminin sonlu elemanlar yöntemi̇ i̇le stati̇k anali̇zi̇. Mühendislik Bilimleri ve Tasarım Dergisi, 9(1), 199–208. https://doi.org/10.21923/jesd.839995
  • [44] Cho, J.-U., & Lee, E.-J. (2004). A study on fatigue fracture under non-constant load. Journal of the Korean Society of Industry-Academic Technology, 5(4), 286–291.
  • [45] Bader, Q., & Njim, E. (2014). Mean stress correction effects on the fatigue life behavior of steel alloys by using stress life approach theories. International Journal of Emerging Technologies in Learning (iJET), 14.
  • [46] Aghili, S. A., Hassani, K., & Nikkhoo, M. (2021). A finite element study of fatigue load effects on total hip joint prosthesis. Computer Methods in Biomechanics and Biomedical Engineering, 24(14), 1545–1551. https://doi.org/10.1080/10255842.2021.1900133
  • [47] Kayabasi, O., & Ekici, B. (2007). The effects of static, dynamic and fatigue behavior on three-dimensional shape optimization of hip prosthesis by finite element method. Materials & Design, 28(8), 2269–2277. https://doi.org/10.1016/j.matdes.2006.08.012
  • [48] Wimalasiri, D. H. R. J. (2009, January 1). Enhancement of the fatigue performance of Ti-6Al-4V implant products. Ph.D. Thesis. Sheffield Hallam University, United Kingdom. Retrieved from https://ui.adsabs.harvard.edu/abs/2009PhDT.......211W
  • [49] Munteanu, S., Munteanu, D., Gheorghiu, B., Bedo, T., Gabor, C., Cremascoli, P., … Pop, M. A. (2019). Additively manufactured femoral stem topology optimization: case study. Materials Today: Proceedings, 19, 1019–1025. https://doi.org/10.1016/j.matpr.2019.08.016
  • [50] Ghosh, S., Abanteriba, S., Wong, S., Brkljača, R., & Houshyar, S. (2019). Optimisation of grafted phosphorylcholine-based polymer on additively manufactured titanium substrate for hip arthroplasty. Materials Science and Engineering: C, 101, 696–706. https://doi.org/10.1016/j.msec.2019.04.017
  • [51] Campioni, I., Notarangelo, G., Andreaus, U., Ventura, A., & Giacomozzi, C. (2013). Hip Prostheses Computational Modeling: FEM Simulations Integrated with Fatigue Mechanical Tests. In U. Andreaus & D. Iacoviello (Eds.), Biomedical Imaging and Computational Modeling in Biomechanics (pp. 81–108). Dordrecht: Springer Netherlands. https://doi.org/10.1007/978-94-007-4270-3_5
  • [52] Delikanli, Y. E., & Kayacan, M. C. (2019). Design, manufacture, and fatigue analysis of lightweight hip implants. Journal of Applied Biomaterials & Functional Materials, 17(2), 2280800019836830. https://doi.org/10.1177/2280800019836830
  • [53] He, Y., Burkhalter, D., Durocher, D., & Gilbert, J. M. (2018). Solid-Lattice Hip Prosthesis Design: Applying Topology and Lattice Optimization to Reduce Stress Shielding from Hip Implants. Presented at the 2018 Design of Medical Devices Conference, American Society of Mechanical Engineers Digital Collection. https://doi.org/10.1115/DMD2018-6804
  • [54] Joshi, T., Sharma, R., Kumar Mittal, V., & Gupta, V. (2021). Comparative investigation and analysis of hip prosthesis for different bio-compatible alloys. Materials Today: Proceedings, 43, 105–111. https://doi.org/10.1016/j.matpr.2020.11.222
  • [55] Joshi, T., Sharma, R., Mittal, V. K., Gupta, V., & Krishan, G. (2022). Dynamic analysis of hip prosthesis using different biocompatible alloys. ASME Open Journal of Engineering, 1(011001). https://doi.org/10.1115/1.4053417
  • [56] Hosseini, S. (2012). Fatigue of Ti-6Al-4V. In Biomedical Engineering - Technical Applications in Medicine. IntechOpen. https://doi.org/10.5772/45753
There are 56 citations in total.

Details

Primary Language English
Subjects Numerical Modelization in Civil Engineering
Journal Section Research Articles
Authors

Fatih Kaya 0000-0003-0161-1658

Gülhan İnce 0000-0003-4887-2900

Early Pub Date October 26, 2024
Publication Date October 26, 2024
Submission Date August 30, 2024
Acceptance Date October 23, 2024
Published in Issue Year 2024 Volume: 6 Issue: 3

Cite

APA Kaya, F., & İnce, G. (2024). Fatigue Analysis on a Newly Designed Hip Implant with Finite Element Method. International Journal of Engineering and Innovative Research, 6(3), 162-178. https://doi.org/10.47933/ijeir.1540604

88x31.png

This work is licensed under a Creative Commons Attribution 4.0 International License