Abstract
Teaching with technology is considered a necessity in the U.S. mathematics classroom. However, few studies have established explicit considerations to support technology-enhanced student achievement. The purpose of this study was to characterize the effectiveness of technology in the mathematics classroom by systematically reviewing meta-analytic research. An exhaustive literature search was conducted. After applying a prioi inclusion criteria the pool of 65 initial meta-analyses was reduce to 13 representative studies. Each study was reviewed and characteristics were coded in four categories: (1) sample, (2) measurement, (3) design, and (4) source. An inductive review of the coded studies produced five unique moderators that were the most salient across studies. Overall mean effect sizes were retrieved or calculated from available study data. Hedges g was used as the common effect size metric for comparison across studies. The Technological Pedagogical Content Knowledge (TPACK) framework was used to interpret the most salient moderators of effects across studies. Studies were categorized by didactical functionality and technology type. The results suggest that effects vary by didactical functionality from small to medium. The largest variations were observed for the didactical function of developing conceptual understanding. Implications for research and instructional praxis are provided.