BibTex RIS Cite

Association Rule Mining to Extract Knowledge from Online Store Transactions of a Turkish Retail Company: A Case Study

Year 2014, Volume: 4 Issue: 4, 861 - 865, 01.12.2014

Abstract

Data mining techniques have been implemented in many fields namely, marketing, insurance, finance, medicine, computer science and many more. In marketing it is used as a tool to cluster and classify customers so that their buying patterns, demographical information, market basket can be analyzed to help the CRM representative and decision makers [1]. In this study online store transactions of multi-branch Turkish Retail Company have been analyzed and many associations rules have been discovered. The analyzed volume of transactions of completed sales exceeds 14000 for a single season. At first data is cleaned from unrelated fields then presented to R studio to implement the Apriori algorithm[2] in order to extract knowledge and obtain association rules between goods. Results are proven be worthy over the conventional methodologies. The extracted data are tested successfully with a sample group of customers to validate the association rules which give unique insights about customer behaviors.

References

  • Timor M. ,EZERCE A. , GURSOY
  • U. T., “Müşteri Profili ve Alişveriş Davranışlarını Belirlemede Kümeleme ve Birliktelik Kuralları Analizi: Perakende sektöründe bir uygulama” , İstanbul Üniversitesi İşletme Fakültesi İşletme İktisadı Enstitüsü Dergisi, February 2011 22 68
  • R. Agrawal, R. Srikant, Fast algorithms for
  • mining association rules, in: Proceedings of the 20th International Conference on Very Large Data Bases, 1994, pp. 487–499
  • J. Singh, H. Ram, Dr. J.S. Sodhi, Improving
  • Efficiency of Apriori Algorithm Using Transaction Reduction International Journal of Scientific and Research Publications, Volume 3, Issue 1, January 2013
  • Cheng-Hsiung Weng, Mining fuzzy
  • specific rare itemsets for education data, Knowledge-Based Systems, Volume 24, Issue 5, July 2011, Pages 697-708, ISSN 0950-7051, http://dx.doi.org/10.1016/j. knosys.2011.02.010.
  • R. Agrawal, T. Imielinski, A. Swami,
  • Mining association rules between sets of items in large databases, in: Proceedings of ACM SIGMOD, 1993, pp. 207–216.
  • Y.L. Chen, C.H. Weng, Mining association
  • rules from imprecise ordinal data, Fuzzy Sets and Systems 159 (4) (2008) 460–474.
  • Y.L. Chen, C.H. Weng, Mining fuzzy
  • association rules from questionnaire data, Knowledge-Based Systems 22 (1) (2009) 46–56.
  • M. Delgado, N. Marin, D. Sanchez, M.A.
  • Vila, Fuzzy association rules: general model and applications, IEEE Transactions on Fuzzy Systems 11 (2) (2003) 214–225
  • S. S. Weng, S. C. Liu, T. H. Wu, Applying
  • bayesian network and association rule analysis for product recommendation, International Journal of Electronic Business Management 2011
  • Moon, T.K., “The expectation
  • maximization algorithm,” Signal Processing Magazine, IEEE , vol.13, no.6, pp.47,60, Nov 1996 doi: 10.1109/79.543975
  • G. Gürgen, “Birliktelik kuralları ve sepet
  • analizi uygulaması”, yüksek lisans tezi, Marmara Universitesi, istatistik Anabilim dalı
  • T. SERVİ, “Çok Değişkenli Karma
  • Dağilim Modeline Dayali Kümeleme Analizi”, Çukurova Üniversitesi Fen Bilimleri Enstitüsü, PhD. Thesis, 2009
Year 2014, Volume: 4 Issue: 4, 861 - 865, 01.12.2014

Abstract

References

  • Timor M. ,EZERCE A. , GURSOY
  • U. T., “Müşteri Profili ve Alişveriş Davranışlarını Belirlemede Kümeleme ve Birliktelik Kuralları Analizi: Perakende sektöründe bir uygulama” , İstanbul Üniversitesi İşletme Fakültesi İşletme İktisadı Enstitüsü Dergisi, February 2011 22 68
  • R. Agrawal, R. Srikant, Fast algorithms for
  • mining association rules, in: Proceedings of the 20th International Conference on Very Large Data Bases, 1994, pp. 487–499
  • J. Singh, H. Ram, Dr. J.S. Sodhi, Improving
  • Efficiency of Apriori Algorithm Using Transaction Reduction International Journal of Scientific and Research Publications, Volume 3, Issue 1, January 2013
  • Cheng-Hsiung Weng, Mining fuzzy
  • specific rare itemsets for education data, Knowledge-Based Systems, Volume 24, Issue 5, July 2011, Pages 697-708, ISSN 0950-7051, http://dx.doi.org/10.1016/j. knosys.2011.02.010.
  • R. Agrawal, T. Imielinski, A. Swami,
  • Mining association rules between sets of items in large databases, in: Proceedings of ACM SIGMOD, 1993, pp. 207–216.
  • Y.L. Chen, C.H. Weng, Mining association
  • rules from imprecise ordinal data, Fuzzy Sets and Systems 159 (4) (2008) 460–474.
  • Y.L. Chen, C.H. Weng, Mining fuzzy
  • association rules from questionnaire data, Knowledge-Based Systems 22 (1) (2009) 46–56.
  • M. Delgado, N. Marin, D. Sanchez, M.A.
  • Vila, Fuzzy association rules: general model and applications, IEEE Transactions on Fuzzy Systems 11 (2) (2003) 214–225
  • S. S. Weng, S. C. Liu, T. H. Wu, Applying
  • bayesian network and association rule analysis for product recommendation, International Journal of Electronic Business Management 2011
  • Moon, T.K., “The expectation
  • maximization algorithm,” Signal Processing Magazine, IEEE , vol.13, no.6, pp.47,60, Nov 1996 doi: 10.1109/79.543975
  • G. Gürgen, “Birliktelik kuralları ve sepet
  • analizi uygulaması”, yüksek lisans tezi, Marmara Universitesi, istatistik Anabilim dalı
  • T. SERVİ, “Çok Değişkenli Karma
  • Dağilim Modeline Dayali Kümeleme Analizi”, Çukurova Üniversitesi Fen Bilimleri Enstitüsü, PhD. Thesis, 2009
There are 24 citations in total.

Details

Other ID JA59EZ28EE
Journal Section Articles
Authors

Elif Şafak Sivri This is me

Mustafa Cem Kasapbaşı This is me

Fettullah Karabiber This is me

Publication Date December 1, 2014
Published in Issue Year 2014 Volume: 4 Issue: 4

Cite

APA Şafak Sivri, E., Kasapbaşı, M. C., & Karabiber, F. (2014). Association Rule Mining to Extract Knowledge from Online Store Transactions of a Turkish Retail Company: A Case Study. International Journal of Electronics Mechanical and Mechatronics Engineering, 4(4), 861-865.