Research Article
BibTex RIS Cite

A Review o f Criteria I n Rain Water Harvesting Management

Year 2019, Volume: 2 Issue: 3, 9 - 16, 31.12.2019

Abstract

Rainwater harvesting has gained renewed interest in the arid and semi-arid regions since the 1970s. It is important to consider how significant amounts of water can be harvest from a single catchment location. Papers selected address a wide range of rainwater harvesting problems, including the regionalization of nature curves. The rural population has limited income, a high susceptibility to climate change, conventional agricultural activities and adversely affected water shortages. Rain Water Harvest is an alternative cause to water shortages and groundwater depletion issues. The discovery of suitable rainwater harvesting sites is an essential move towards optimizing the amount of water harvesting and mitigating the ecological effect by using remote sensing and GIS techniques. In this article, the main requirements and parameters for selecting appropriate sites for rainwater harvesting have been extract from previous studies.

References

  • Ahmad, I., & Verma, M. K. (2018). Application of Analytic Hierarchy Process in Water Resources Planning: A GIS Based Approach in the Identification of Suitable Site for Water Storage. Water Resources Management, 32(15), 5093–5114. https://doi.org/10.1007/s11269-018-2135-x.
  • Ahmed, T. H., & Al-manmi, D. A. M. (2019). Delineation of Groundwater productivity Zones with the integration of GIS and Remote Sensing methods , Bazian Basin , Sulaymaniyah , Kurdistan. 2(2).
  • Al-Abadi, A. M., Shahid, S., Ghalib, H. B., & Handhal, A. M. (2017). A GIS-Based Integrated Fuzzy Logic and Analytic Hierarchy Process Model for Assessing Water-Harvesting Zones in Northeastern Maysan Governorate, Iraq. Arabian Journal for Science and Engineering, 42(6), 2487–2499. https://doi.org/10.1007/s13369-017-2487-1.
  • Al-Adamat, R. (2008). GIS as a decision support system for siting water harvesting ponds in the basalt aquifer/NE Jordan. Journal of Environmental Assessment Policy and Management. https://doi.org/10.1142/S1464333208003020.
  • Al-Adamat, R., AlAyyash, S., Al-Amoush, H., Al-Meshan, O., Rawajfih, Z., Shdeifat, A., Al-Harahsheh, A., & Al-Farajat, M. (2012). The combination of indigenous knowledge and geo-informatics for water harvesting siting in the Jordanian Badia.
  • Al-Adamat, R., Diabat, A., & Shatnawi, G. (2010). Combining GIS with multicriteria decision making for siting water harvesting ponds in Northern Jordan. Journal of Arid Environments, 74(11), 1471–1477. https://doi.org/10.1016/j.jaridenv.2010.07.001.
  • Al-shabeeb, A. R. (2016). The Use of AHP within GIS in Selecting Potential Sites for Water Harvesting Sites in the Azraq Basin—Jordan. Journal of Geographic Information System, 08(01), 73–88. https://doi.org/10.4236/jgis.2016.81008.
  • Al-Shamiri, A., & Ziadat, F. M. (2012). Soil-landscape modeling and land suitability evaluation: the case of rainwater harvesting in a dry rangeland environment. International Journal of Applied Earth Observation and Geoinformation, 18, 157–164.
  • Ammar, A., Riksen, M., Ouessar, M., & Ritsema, C. (2016). Identification of suitable sites for rainwater harvesting structures in arid and semi-arid regions: A review. International Soil and Water Conservation Research, 4(2), 108–120. https://doi.org/10.1016/j.iswcr.2016.03.001.
  • Anane, M., Bouziri, L., Limam, A., & Jellali, S. (2012). Ranking suitable sites for irrigation with reclaimed water in the Nabeul-Hammamet region (Tunisia) using GIS and AHP-multicriteria decision analysis. Resources, Conservation and Recycling, 65, 36–46. https://doi.org/10.1016/j.resconrec.2012.05.006.
  • Bamne, Y., Patil, K. A., & Vikhe, S. D. (2014). Selection of appropriate sites for structures of water harvesting in a watershed using remote sensing and geographical information system. International Journal of Emerging Technology and Advanced Engineering, 4(11), 270–275.
  • Basinger, M., Montalto, F., & Lall, U. (2010). A rainwater harvesting system reliability model based on nonparametric stochastic rainfall generator. Journal of Hydrology, 392(3–4), 105–118.
  • Bouma, J. A., Hegde, S. S., & Lasage, R. (2016). Assessing the returns to water harvesting: A meta-analysis. Agricultural Water Management, 163, 100–109.
  • Bulcock, L. M., & Jewitt, G. P. W. (2013). Key physical characteristics used to assess water harvesting suitability. Physics and Chemistry of the Earth, Parts A/B/C, 66, 89–100.
  • Buraihi, F. H., & Shariff, A. R. M. (2015). Selection of rainwater harvesting sites by using remote sensing and GIS techniques: A case study of Kirkuk, Iraq. Jurnal Teknologi, 76(15), 75–81. https://doi.org/10.11113/jt.v76.5955.
  • Campisano, A., Butler, D., Ward, S., Burns, M. J., Friedler, E., DeBusk, K., Fisher-Jeffes, L. N., Ghisi, E., Rahman, A., & Furumai, H. (2017). Urban rainwater harvesting systems: Research, implementation and future perspectives. Water Research, 115, 195–209.
  • de Winnaar, G., Jewitt, G. P. W., & Horan, M. (2007a). A GIS-based approach for identifying potential runoff harvesting sites in the Thukela River basin, South Africa. Physics and Chemistry of the Earth. https://doi.org/10.1016/j.pce.2007.07.009.
  • de Winnaar, G., Jewitt, G. P. W., & Horan, M. (2007b). A GIS-based approach for identifying potential runoff harvesting sites in the Thukela River basin, South Africa. Physics and Chemistry of the Earth, 32(15–18), 1058–1067. https://doi.org/10.1016/j.pce.2007.07.009.
  • DeBusk, K. M., Hunt, W. F., & Wright, J. D. (2013). Characterizing rainwater harvesting performance and demonstrating stormwater management benefits in the humid southeast USA. JAWRA Journal of the American Water Resources Association, 49(6), 1398–1411.
  • Eroksuz, E., & Rahman, A. (2010). Rainwater tanks in multi-unit buildings: A case study for three Australian cities. Resources, Conservation and Recycling, 54(12), 1449–1452.
  • FAO. (215 C.E.). No Title. http://www.fao.org/ag/agp/greenercities/en/whyuph/.
  • FAO, I. (2003). Soil and terrain database for Southern Africa (1: 2 million scale). FAO Land and Water Digital Media Series, 25.
  • Fonseca, C. R., Hidalgo, V., Díaz-Delgado, C., Vilchis-Francés, A. Y., & Gallego, I. (2017). Design of optimal tank size for rainwater harvesting systems through use of a web application and geo-referenced rainfall patterns. Journal of Cleaner Production, 145, 323–335.
  • Gavit, B. K., Purohit, R. C., Singh, P. K., Kothari, M., & Jain, H. K. (2018). Rainwater Harvesting Structure Site Suitability Using Remote Sensing and GIS. 331–341. https://doi.org/10.1007/978-981-10-5801-1_23.
  • Ghani, M. W., Arshad, M., Shabbir, A., Mehmood, N., & Ahmad, I. (2013). Investigation of potential water harvesting sites at Potohar using modeling approach. Pakistan Journal of Agricultural Sciences, 50(4).
  • Ghisi, E. (2010). Parameters influencing the sizing of rainwater tanks for use in houses. Water Resources Management, 24(10), 2381–2403.
  • GOULD, J., QIANG, Z. H. U., & YUANHONG, L. I. (2014). Using every last drop: rainwater harvesting and utilization in Gansu Province, China. Waterlines, 107–119.
  • Haile, G., & Suryabhagavan, K. V. (2019). GIS-based approach for identification of potential rainwater harvesting sites in Arsi Zone, Central Ethiopia. Modeling Earth Systems and Environment, 5(1), 353–367.
  • Hajani, E., & Rahman, A. (2014). Reliability and cost analysis of a rainwater harvesting system in peri-urban regions of Greater Sydney, Australia. Water, 6(4), 945–960.
  • Hamdan, S. M. (2009). A literature based study of stormwater harvesting as a new water resource. Water Science and Technology, 60(5), 1327–1339.
  • Hameed, H. M. (2013). Student thesis series INES nr 271 Water harvesting in Erbil Governorate, Kurdistan region, Iraq Detection of suitable sites using Geographic Information System and Remote Sensing. 271.
  • Han, M. Y., & Mun, J. S. (2011). Operational data of the Star City rainwater harvesting system and its role as a climate change adaptation and a social influence. Water Science and Technology, 63(12), 2796–2801.
  • Hanson, L. S., & Vogel, R. M. (2014). Generalized storage–reliability–yield relationships for rainwater harvesting systems. Environmental Research Letters, 9(7), 75007.
  • Haque, M. M., Rahman, A., & Samali, B. (2016). Evaluation of climate change impacts on rainwater harvesting. Journal of Cleaner Production, 137, 60–69.
  • Ibrahim, G. R. F., Rasul, A., Ali Hamid, A., Ali, Z. F., & Dewana, A. A. (2019). Suitable site selection for rainwater harvesting and storage case study using Dohuk Governorate. Water, 11(4), 864.
  • Isioye, O. A. (2012). A multi criteria decision support system (MDSS) for identifing rainwater harvesting site (S) in Zaria, Kaduna state, Nigeria. International Journal of Advanced Scientific Engineering and Technological Research, 1(1).
  • Jasrotia, A. S., Majhi, A., & Singh, S. (2009). Water balance approach for rainwater harvesting using remote sensing and GIS techniques, Jammu Himalaya, India. Water Resources Management, 23(14), 3035–3055.
  • Kahinda, J. M., Lillie, E. S. B., Taigbenu, A. E., Taute, M., & Boroto, R. J. (2008). Developing suitability maps for rainwater harvesting in South Africa. Physics and Chemistry of the Earth, 33(8–13), 788–799. https://doi.org/10.1016/j.pce.2008.06.047.
  • Karimi, H., & Zeinivand, H. (2019). Integrating runoff map of a spatially distributed model and thematic layers for identifying potential rainwater harvesting suitability sites using GIS techniques. Geocarto International, 0(0), 1–20. https://doi.org/10.1080/10106049.2019.1608590.
  • Khan, M. D., & Khattak, M. (2012). Siting of rainwater harvesting locations in District Haripur using Geographic Information Techniques. Journal of Himalayan Earth Science, 45(2).
  • Krois, J., & Schulte, A. (2014). GIS-based multi-criteria evaluation to identify potential sites for soil and water conservation techniques in the Ronquillo watershed, northern Peru. Applied Geography, 51, 131–142.
  • Kumar, M. G., Agarwal, A. K., & Bali, R. (2008). Delineation of potential sites for water harvesting structures using remote sensing and GIS. Journal of the Indian Society of Remote Sensing, 36(4), 323–334. https://doi.org/10.1007/s12524-008-0033-z.
  • Lasage, R., & Verburg, P. H. (2015). Evaluation of small scale water harvesting techniques for semi-arid environments. Journal of Arid Environments, 118, 48–57.
  • Mahmoud, S. H., & Alazba, A. A. (2015). The potential of in situ rainwater harvesting in arid regions: developing a methodology to identify suitable areas using GIS-based decision support system. Arabian Journal of Geosciences, 8(7), 5167–5179. https://doi.org/10.1007/s12517-014-1535-3.
  • Mekdaschi, R., & Liniger, H. (2013). Water harvesting: guidelines to good practice. Centre for Development and Environment.
  • Ngigi, S N. (2003). Rainwater Harvesting For Improved Food Security: Promising Technologies In The Greater Horn Of Africa. Greater Horn Of Africa Rainwater Partnership (GHARP), Kenya Rainwater Association (KRA), Nairobi, Kenya./) 266.
  • Ngigi, Stephen N., Savenije, H. H. G., & Gichuki, F. N. (2007). Land use changes and hydrological impacts related to up-scaling of rainwater harvesting and management in upper Ewaso Ng’iro river basin, Kenya. Land Use Policy, 24(1), 129–140. https://doi.org/10.1016/j.landusepol.2005.10.002.
  • Noori, A. M., Pradhan, B., & Ajaj, Q. M. (2019). Dam site suitability assessment at the Greater Zab River in northern Iraq using remote sensing data and GIS. Journal of Hydrology, 574(April 2018), 964–979. https://doi.org/10.1016/j.jhydrol.2019.05.001.
  • Paper, C., Saxena, A., & Jaipur, T. (2018). Optimum Site Selection of Water Harvesting Structures Using Geospatial Analysis and Multi Criteria Evaluation Techniques. Hydro-2017 International, L.D. College of Engineering Ahmedabad, India, December 2017, 0–10.
  • Rahman, A., Keane, J., & Imteaz, M. A. (2012). Rainwater harvesting in Greater Sydney: Water savings, reliability and economic benefits. Resources, Conservation and Recycling, 61, 16–21.
  • Ramakrishnan, D., Bandyopadhyay, A., & Kusuma, K. N. (2009). SCS-CN and GIS-based approach for identifying potential water harvesting sites in the Kali Watershed, Mahi River Basin, India. Journal of Earth System Science, 118(4), 355–368. https://doi.org/10.1007/s12040-009-0034-5.
  • Ramakrishnan, D., Durga Rao, K. H. V., & Tiwari, K. C. (2008). Delineation of potential sites for water harvesting structures through remote sensing and GIS techniques: A case study of Kali watershed, Gujarat, India. Geocarto International, 23(2), 95–108. https://doi.org/10.1080/10106040701417246.
  • Salar, S. G., Othman, A. A., & Hasan, S. E. (2018). Identification of suitable sites for groundwater recharge in Awaspi watershed using GIS and remote sensing techniques. Environmental Earth Sciences, 77(19), 0. https://doi.org/10.1007/s12665-018-7887-3.
  • Schuetze, T. (2013). Rainwater harvesting and management–policy and regulations in Germany. Water Science and Technology: Water Supply, 13(2), 376–385.
  • Sharifi, E., Unami, K., Mohawesh, O., Nakamichi, T., & Fujihara, M. (2015). Design and construction of a hydraulic structure for rainwater harvesting in arid environment. Proceedings of the 36th IAHR World Congress, Delft, The Netherlands, 28.
  • Singh, J. P., Singh, D., & Litoria, P. K. (2009). Selection of suitable sites for water harvesting structures in Soankhad watershed, Punjab using remote sensing and geographical information system (RS&GIS) approach—A case study. Journal of the Indian Society of Remote Sensing, 37(1), 21–35.
  • Singhai, A., Das, S., Kadam, A. K., Shukla, J. P., Bundela, D. S., & Kalashetty, M. (2019). GIS-based multi-criteria approach for identification of rainwater harvesting zones in upper Betwa sub-basin of Madhya Pradesh, India. Environment, Development and Sustainability, 21(2), 777–797. https://doi.org/10.1007/s10668-017-0060-4.
  • Tera’at El Mansuriyah St, E. (2012). Determining potential sites for runoff water harvesting using remote sensing and geographic information systems-based modeling in Sinai. Am. J. Environ. Sci, 8, 42–55.
  • Tumbo, S. D., Mbilinyi, B. P., Mahoo, H. F., & Mkiramwinyi, F. O. (2006). Determination of suitability levels for important factors for identification of potential sites for rainwater harvesting. 7th WaterNet-WARFSA-GWP-SA Symposium. UN. (2014). No Title.
  • https://www.un.org/waterforlifedecade/scarcity.shtml
  • Van der Sterren, M., Rahman, A., & Dennis, G. R. (2012). Implications to stormwater management as a result of lot scale rainwater tank systems: a case study in Western Sydney, Australia. Water Science and Technology, 65(8), 1475–1482.
  • Van der Sterren, M., Rahman, A., & Dennis, G. R. (2013). Quality and quantity monitoring of five rainwater tanks in Western Sydney, Australia. Journal of Environmental Engineering, 139(3), 332–340.
  • Van der Sterren, M., Rahman, A., Shrestha, S., Barker, G., & Ryan, G. (2009). An overview of on-site retention and detention policies for urban stormwater management in the Greater Western Sydney Region in Australia. Water International, 34(3), 362–372.
  • Ward, S, Memon, F. A., & Butler, D. (2012). Performance of a large building rainwater harvesting system. Water Research, 46(16), 5127–5134.
  • Ward, Sarah, & Butler, D. (2016). Rainwater harvesting and social networks: visualising interactions for niche governance, resilience and sustainability. Water, 8(11), 526.
  • Wu, R. S., Molina, G. L. L., & Hussain, F. (2018). Optimal Sites Identification for Rainwater Harvesting in Northeastern Guatemala by Analytical Hierarchy Process. Water Resources Management, 32(12), 4139–4153. https://doi.org/10.1007/s11269-018-2050-1.
  • Zakaria, S., Al-Ansari, N., Knutsson, S., & Ezz-Aldeen, M. (2012). Rain Water Harvesting and Supplemental Irrigation at Northern Sinjar Mountain, Iraq. Journal of Purity, Utility Reaction and Environment.
  • Ziadat, F., Bruggeman, A., Oweis, T., Haddad, N., Mazahreh, S., Sartawi, W., & Syuof, M. (2012). A participatory GIS approach for assessing land suitability for rainwater harvesting in an arid rangeland environment. Arid Land Research and Management, 26(4), 297–311.
There are 68 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Research Article
Authors

Shaho Noori This is me

Redvan Ghasemlounia This is me

Publication Date December 31, 2019
Published in Issue Year 2019 Volume: 2 Issue: 3

Cite

APA Noori, S., & Ghasemlounia, R. (2019). A Review o f Criteria I n Rain Water Harvesting Management. International Journal of Engineering and Natural Sciences, 2(3), 9-16.
AMA Noori S, Ghasemlounia R. A Review o f Criteria I n Rain Water Harvesting Management. IJENS. December 2019;2(3):9-16.
Chicago Noori, Shaho, and Redvan Ghasemlounia. “A Review O F Criteria I N Rain Water Harvesting Management”. International Journal of Engineering and Natural Sciences 2, no. 3 (December 2019): 9-16.
EndNote Noori S, Ghasemlounia R (December 1, 2019) A Review o f Criteria I n Rain Water Harvesting Management. International Journal of Engineering and Natural Sciences 2 3 9–16.
IEEE S. Noori and R. Ghasemlounia, “A Review o f Criteria I n Rain Water Harvesting Management”, IJENS, vol. 2, no. 3, pp. 9–16, 2019.
ISNAD Noori, Shaho - Ghasemlounia, Redvan. “A Review O F Criteria I N Rain Water Harvesting Management”. International Journal of Engineering and Natural Sciences 2/3 (December 2019), 9-16.
JAMA Noori S, Ghasemlounia R. A Review o f Criteria I n Rain Water Harvesting Management. IJENS. 2019;2:9–16.
MLA Noori, Shaho and Redvan Ghasemlounia. “A Review O F Criteria I N Rain Water Harvesting Management”. International Journal of Engineering and Natural Sciences, vol. 2, no. 3, 2019, pp. 9-16.
Vancouver Noori S, Ghasemlounia R. A Review o f Criteria I n Rain Water Harvesting Management. IJENS. 2019;2(3):9-16.