Theoretical Article
BibTex RIS Cite
Year 2022, Volume: 5 Issue: 2, 99 - 108, 31.12.2022

Abstract

References

  • Araújo, G.M. and Lima Neto, I.E., 2018, Removal of organic matter in stormwater ponds: a plug-flow model generalisation from waste stabilisation ponds to shallow rivers, Urban Water J., Vol. 15(9), 918-924. DOI: https://doi.org/10.1080/1573062X.2019.1581231
  • Abagale, F.K. and Richard, A.O., 2021, Diversity Profiling of Helminth Eggs in Waste Stabilisation Ponds in the Tamale Metropolis, Ghana, Ghana J. Tech., Vol. 7(2), pp.1-11.
  • DOI: https://doi.org/10.47881/255.967x
  • Garcia-Rodriguez, O., Mousset, E., Olvera-Vargas, H. and Lefebvre, O., 2022, Electrochemical treatment of highly concentrated wastewater: A review of experimental and modeling approaches from lab-to full-scale, Crit. Rev. Environ. Sci. Technol., Vol. 52(2), 240-309.
  • DOI: https://doi.org/10.1080/10643389.2020.1820428
  • George, I., Crop, P., and Servais, P., 2002, Fecal coliform removal in wastewater treatment plants studied by plate counts and enzymatic methods, Water Res., Vol. 36, 2607–2617.
  • DOI: https://doi.org/10.1016/S0043-1354(01)00475-4
  • Goodarzi, D., Mohammadian, A., Pearson, J. and Abolfathi, S., 2022, Numerical modelling of hydraulic efficiency and pollution transport in waste stabilization ponds, Ecol. Eng., Vol. 182, 106702. DOI: https://doi.org/10.1016/j.ecoleng.2022.106702
  • Liotta, F., Chatellier, P., Esposito, G., Fabbricino, M., Van Hullebusch, E.D. and Lens, P.N., 2014, Hydrodynamic mathematical modelling of aerobic plug flow and nonideal flow reactors: a critical and historical review, Crit. Rev. Environ. Sci. Technol., Vol. 44(23), 2642-2673.
  • DOI: https://doi.org/10.1080/10643389.2013.829768
  • Li, M., Zhang, H., Lemckert, C., Roiko, A. and Stratton, H., 2018. On the hydrodynamics and treatment efficiency of waste stabilisation ponds: From a literature review to a strategic evaluation framework. J. Clean. Prod., 183, pp.495-514. DOI: https://doi.org/10.1016/j.jclepro.2018.01.199
  • Liu, L., Hall, G. and Champagne, P., 2020, The role of algae in the removal and inactivation of pathogenic indicator organisms in wastewater stabilization pond systems, Algal Res., Vol. 46, 101777. DOI: https://doi.org/10.1016/j.algal.2019.101777
  • Olukanni, D.O., & Ducoste, J.J., 2011, Optimization of waste stabilization pond design for developing nations using computational fluid dynamics, Ecol. Eng., 37, 1878–1888.
  • DOI: https://doi.org/10.1016/j.ecoleng.2011.06.003
  • Mahapatra, S., Samal, K. and Dash, R.R., 2022, Waste Stabilization Pond (WSP) for wastewater treatment: A review on factors, modelling and cost analysis, J. Environ. Manage. Vol. 308, 114668. DOI: https://doi.org/10.1016/j.jenvman.2022.114668
  • Majumder, A., Gupta, A.K., Ghosal, P.S. and Varma, M., 2021, A review on hospital wastewater treatment: A special emphasis on occurrence and removal of pharmaceutically active compounds, resistant microorganisms, and SARS-CoV-2, J. of Environ. Chem. Eng., Vol. 9(2), 104812.
  • DOI: https://doi.org/10.1016/j.jece.2020.104812
  • Maryam, B. and Büyükgüngör, H., 2019, Wastewater reclamation and reuse trends in Turkey: Opportunities and challenges, J. of Water Process. Eng., Vol. 30, 100501.
  • DOI: https://doi.org/10.1016/j.jwpe.2017.10.001
  • Martinez, F.C., Salazar, A.D., Rojas, A.L., Rojas, R.L., and Sifuentes, A.C.U., 2012, Elimination of fecal coliforms in stabilization lagoons with different arrangements, Far East J. Appl. Math. Vol. 69, 87–110. Available online at: http://www.pphmj.com/journals/fjam.htm
  • Mara, D., 2013, Domestic wastewater treatment in developing countries, Routledge. DOI: https://doi.org/10.4324/9781849771023
  • Mathur, P. and Singh, S., 2022, Analyze mathematical model for optimization of anaerobic digestion for treatment of wastewater, Materials Today: Proceedings. Vol. 62 (8), 5575-5582.
  • DOI: https://doi.org/10.1016/j.matpr.2022.04.606
  • Merchán-Sanmartín, B., Aguilar-Aguilar, M., Morante-Carballo, F., Carrión-Mero, P., Guambaña-Palma, J., Mestanza-Solano, D. and Berrezueta, E., 2022, Design of Sewerage System and Wastewater Treatment in a Rural Sector: A Case Study, Planning, Vol. 17(1), 51-61.
  • DOI: https://doi.org/10.18280/ijsdp.170105
  • Recio-Garrido, D., Kleiner, Y., Colombo, A. and Tartakovsky, B., 2018, Dynamic model of a municipal wastewater stabilization pond in the arctic, Water Res., Vol. 144, 444-453.
  • DOI: https://doi.org/10.1016/j.watres.2018.07.052
  • Sperling, V. M., 2007, Waste stabilisation ponds. IWA publishing.
  • URI: http://library.oapen.org/handle/20.500.12657/31040
  • Tuik, “Belediye Su İstatistikleri, 2018.” Available. https://data.tuik.gov.tr/Bulten/Index?p=Belediye-Su-Istatistikleri-2018-30668 (Accessed on January 26, 2022)
  • T.C. Cumhurbaşkanliği Mevzuat Bilgi Sistemi “Resmî Gazete Tarihi: 18.08.2010, Sayısı: 27676(Ek-1),”https://www.mevzuat.gov.tr/mevzuat?MevzuatNo=14217&MevzuatTur=7&MevzuatTertip=5 (Accessed on January 20, 2022).

Impact of Baffle Walls on Area and Hydraulic Detention Time Needed for Wastewater Stabilization Ponds at Different Pollutant Loads

Year 2022, Volume: 5 Issue: 2, 99 - 108, 31.12.2022

Abstract

This paper mainly presents the in-depth analysis performed to explore the effect of baffle walls (BWs) on the requirement of the area and hydraulic detention time (DT) for wastewater stabilization ponds (WSPs). In addition, the influence of various concentrations of fecal coliforms and BOD5 is also presented. The meteorological parameters used to perform the analysis represent Ayvadere, a neighborhood in Arakli city of the Trabzon Province, Turkey. There were 12 different combinations of fecal coliforms and BOD5 influent loads. The analysis also included 3 different configurations of ponds, 6 various numbers, and 5 different lengths of the BWs, with which 720 analyses were performed. Configuration 1 gave minimum area and DT by meeting all the WSPs design and irrigation class-B effluent standards. There were 2 BWs with a length of 50 % of the design length of facultative ponds. Moreover, fecal coliforms and BOD5 were 106 (MPN/100 ml) and 300 (mg/l) simultaneously. According to the findings of the study, increasing the number and length of BWs reduces the area and DT required for WSPs. Furthermore, the results also show that the need for both things increased by increasing the pollution load. The cost of BWs is an essential factor compared to the decrease in area. So, an optimization study is recommended using various methods available in the literature. Besides, an examination must be conducted experimentally to compare the results of the analysis performed in this research.

References

  • Araújo, G.M. and Lima Neto, I.E., 2018, Removal of organic matter in stormwater ponds: a plug-flow model generalisation from waste stabilisation ponds to shallow rivers, Urban Water J., Vol. 15(9), 918-924. DOI: https://doi.org/10.1080/1573062X.2019.1581231
  • Abagale, F.K. and Richard, A.O., 2021, Diversity Profiling of Helminth Eggs in Waste Stabilisation Ponds in the Tamale Metropolis, Ghana, Ghana J. Tech., Vol. 7(2), pp.1-11.
  • DOI: https://doi.org/10.47881/255.967x
  • Garcia-Rodriguez, O., Mousset, E., Olvera-Vargas, H. and Lefebvre, O., 2022, Electrochemical treatment of highly concentrated wastewater: A review of experimental and modeling approaches from lab-to full-scale, Crit. Rev. Environ. Sci. Technol., Vol. 52(2), 240-309.
  • DOI: https://doi.org/10.1080/10643389.2020.1820428
  • George, I., Crop, P., and Servais, P., 2002, Fecal coliform removal in wastewater treatment plants studied by plate counts and enzymatic methods, Water Res., Vol. 36, 2607–2617.
  • DOI: https://doi.org/10.1016/S0043-1354(01)00475-4
  • Goodarzi, D., Mohammadian, A., Pearson, J. and Abolfathi, S., 2022, Numerical modelling of hydraulic efficiency and pollution transport in waste stabilization ponds, Ecol. Eng., Vol. 182, 106702. DOI: https://doi.org/10.1016/j.ecoleng.2022.106702
  • Liotta, F., Chatellier, P., Esposito, G., Fabbricino, M., Van Hullebusch, E.D. and Lens, P.N., 2014, Hydrodynamic mathematical modelling of aerobic plug flow and nonideal flow reactors: a critical and historical review, Crit. Rev. Environ. Sci. Technol., Vol. 44(23), 2642-2673.
  • DOI: https://doi.org/10.1080/10643389.2013.829768
  • Li, M., Zhang, H., Lemckert, C., Roiko, A. and Stratton, H., 2018. On the hydrodynamics and treatment efficiency of waste stabilisation ponds: From a literature review to a strategic evaluation framework. J. Clean. Prod., 183, pp.495-514. DOI: https://doi.org/10.1016/j.jclepro.2018.01.199
  • Liu, L., Hall, G. and Champagne, P., 2020, The role of algae in the removal and inactivation of pathogenic indicator organisms in wastewater stabilization pond systems, Algal Res., Vol. 46, 101777. DOI: https://doi.org/10.1016/j.algal.2019.101777
  • Olukanni, D.O., & Ducoste, J.J., 2011, Optimization of waste stabilization pond design for developing nations using computational fluid dynamics, Ecol. Eng., 37, 1878–1888.
  • DOI: https://doi.org/10.1016/j.ecoleng.2011.06.003
  • Mahapatra, S., Samal, K. and Dash, R.R., 2022, Waste Stabilization Pond (WSP) for wastewater treatment: A review on factors, modelling and cost analysis, J. Environ. Manage. Vol. 308, 114668. DOI: https://doi.org/10.1016/j.jenvman.2022.114668
  • Majumder, A., Gupta, A.K., Ghosal, P.S. and Varma, M., 2021, A review on hospital wastewater treatment: A special emphasis on occurrence and removal of pharmaceutically active compounds, resistant microorganisms, and SARS-CoV-2, J. of Environ. Chem. Eng., Vol. 9(2), 104812.
  • DOI: https://doi.org/10.1016/j.jece.2020.104812
  • Maryam, B. and Büyükgüngör, H., 2019, Wastewater reclamation and reuse trends in Turkey: Opportunities and challenges, J. of Water Process. Eng., Vol. 30, 100501.
  • DOI: https://doi.org/10.1016/j.jwpe.2017.10.001
  • Martinez, F.C., Salazar, A.D., Rojas, A.L., Rojas, R.L., and Sifuentes, A.C.U., 2012, Elimination of fecal coliforms in stabilization lagoons with different arrangements, Far East J. Appl. Math. Vol. 69, 87–110. Available online at: http://www.pphmj.com/journals/fjam.htm
  • Mara, D., 2013, Domestic wastewater treatment in developing countries, Routledge. DOI: https://doi.org/10.4324/9781849771023
  • Mathur, P. and Singh, S., 2022, Analyze mathematical model for optimization of anaerobic digestion for treatment of wastewater, Materials Today: Proceedings. Vol. 62 (8), 5575-5582.
  • DOI: https://doi.org/10.1016/j.matpr.2022.04.606
  • Merchán-Sanmartín, B., Aguilar-Aguilar, M., Morante-Carballo, F., Carrión-Mero, P., Guambaña-Palma, J., Mestanza-Solano, D. and Berrezueta, E., 2022, Design of Sewerage System and Wastewater Treatment in a Rural Sector: A Case Study, Planning, Vol. 17(1), 51-61.
  • DOI: https://doi.org/10.18280/ijsdp.170105
  • Recio-Garrido, D., Kleiner, Y., Colombo, A. and Tartakovsky, B., 2018, Dynamic model of a municipal wastewater stabilization pond in the arctic, Water Res., Vol. 144, 444-453.
  • DOI: https://doi.org/10.1016/j.watres.2018.07.052
  • Sperling, V. M., 2007, Waste stabilisation ponds. IWA publishing.
  • URI: http://library.oapen.org/handle/20.500.12657/31040
  • Tuik, “Belediye Su İstatistikleri, 2018.” Available. https://data.tuik.gov.tr/Bulten/Index?p=Belediye-Su-Istatistikleri-2018-30668 (Accessed on January 26, 2022)
  • T.C. Cumhurbaşkanliği Mevzuat Bilgi Sistemi “Resmî Gazete Tarihi: 18.08.2010, Sayısı: 27676(Ek-1),”https://www.mevzuat.gov.tr/mevzuat?MevzuatNo=14217&MevzuatTur=7&MevzuatTertip=5 (Accessed on January 20, 2022).
There are 31 citations in total.

Details

Primary Language English
Subjects Environmental Engineering
Journal Section Articles
Authors

Hafiz Qasim Ali 0000-0003-3077-910X

Osman Üçüncü 0000-0002-8187-4046

Publication Date December 31, 2022
Submission Date July 26, 2022
Published in Issue Year 2022 Volume: 5 Issue: 2

Cite

APA Ali, H. Q., & Üçüncü, O. (2022). Impact of Baffle Walls on Area and Hydraulic Detention Time Needed for Wastewater Stabilization Ponds at Different Pollutant Loads. International Journal of Environmental Pollution and Environmental Modelling, 5(2), 99-108.
AMA Ali HQ, Üçüncü O. Impact of Baffle Walls on Area and Hydraulic Detention Time Needed for Wastewater Stabilization Ponds at Different Pollutant Loads. Int. j. environ. pollut. environ. model. December 2022;5(2):99-108.
Chicago Ali, Hafiz Qasim, and Osman Üçüncü. “Impact of Baffle Walls on Area and Hydraulic Detention Time Needed for Wastewater Stabilization Ponds at Different Pollutant Loads”. International Journal of Environmental Pollution and Environmental Modelling 5, no. 2 (December 2022): 99-108.
EndNote Ali HQ, Üçüncü O (December 1, 2022) Impact of Baffle Walls on Area and Hydraulic Detention Time Needed for Wastewater Stabilization Ponds at Different Pollutant Loads. International Journal of Environmental Pollution and Environmental Modelling 5 2 99–108.
IEEE H. Q. Ali and O. Üçüncü, “Impact of Baffle Walls on Area and Hydraulic Detention Time Needed for Wastewater Stabilization Ponds at Different Pollutant Loads”, Int. j. environ. pollut. environ. model., vol. 5, no. 2, pp. 99–108, 2022.
ISNAD Ali, Hafiz Qasim - Üçüncü, Osman. “Impact of Baffle Walls on Area and Hydraulic Detention Time Needed for Wastewater Stabilization Ponds at Different Pollutant Loads”. International Journal of Environmental Pollution and Environmental Modelling 5/2 (December 2022), 99-108.
JAMA Ali HQ, Üçüncü O. Impact of Baffle Walls on Area and Hydraulic Detention Time Needed for Wastewater Stabilization Ponds at Different Pollutant Loads. Int. j. environ. pollut. environ. model. 2022;5:99–108.
MLA Ali, Hafiz Qasim and Osman Üçüncü. “Impact of Baffle Walls on Area and Hydraulic Detention Time Needed for Wastewater Stabilization Ponds at Different Pollutant Loads”. International Journal of Environmental Pollution and Environmental Modelling, vol. 5, no. 2, 2022, pp. 99-108.
Vancouver Ali HQ, Üçüncü O. Impact of Baffle Walls on Area and Hydraulic Detention Time Needed for Wastewater Stabilization Ponds at Different Pollutant Loads. Int. j. environ. pollut. environ. model. 2022;5(2):99-108.
 ❤ IJEPEM.