Araştırma Makalesi
BibTex RIS Kaynak Göster

INVESTIGATION OF WORDS USED IN LAYS ADVERTISEMENTS USING TEXT MINING METHOD

Yıl 2023, Cilt: 3 Sayı: 2, 24 - 37, 20.10.2023

Öz

This study aimed to examine the content of LAYS potato chips advertisements using text mining methods. The research included 21 LAYS television advertisements shot between 2019-2022 and analyzed the words in the advertisements. According to the analysis results, it was determined that the most frequently used words in LAYS advertisements were “Lays”, “Crispy”, “one”, “second” and “arbitrary”. These results reflect the strategies of emphasizing the brand's name and creating brand loyalty to the consumer. Additionally, when the frequency distribution of the words used in the advertisements was examined, it was observed that the data was in accordance with the Long Tail Distribution. This shows that LAYS supports the strategies of focusing on niche markets, increasing customer loyalty, data analytics and personalization, achieving long-term success and competitive advantage. In conclusion, this study provided important insights into the brand's marketing strategies and advertising appeal by analyzing the text content of LAYS advertisements. It is concluded that using the Long Tail Distribution strategy can increase the success of the brand and provide a competitive advantage. These findings provide valuable guidance for brand managers and marketing professionals.

Kaynakça

  • Ağca Y., Gündüz C., (2023), Türkiye’deki Otel Konuk Yorumları ve Puanlarının Metin Madenciliği ile Analizi, Yönetim Ve Ekonomi, Cilt:30 Sayı:2 Manisa CBÜ İ.İ.B.F.
  • Ağca, Y. (2021). Alternatif Veri Elde Etme Yöntemi, Web Madenciliği: Otel Oda Fiyatlarının Zamansal Analizi. Çanakkale Onsekiz Mart Üni. Yönetim Bilimleri Dergisi, 19(42), 1013-1034
  • Allahyari, Mehdi, Seyedamin Pouriyeh, Mehdi Assefi, Saied Safaei, Elizabeth D. Trippe, Juan B. Gutierrez, and Krys Kochut. (2017). “A Brief Survey of Text Mining: Classification, Clustering and Extraction Techniques.”, KDD Bigdas, August 2017, Halifax, Canada.
  • Amoako-Gyampah, K., Acquaah, M. (2008). Manufacturing Strategy, Competitive Strategy And Firm Performance: An Empirical Study In A Developing Economy Environment. International Journal Of Production Economics, 111(2), 575-592.
  • Argamon, Shlomo, Casey Whitelaw, Paul Chase, Sobhan Raj Hota, Navendu Garg, and Shlomo Levitan. (2007). “Stylistic Text Classification Using Functional Lexical Features.” Journal of the American Society for Information Science and Technology 58(6):802–22.
  • Artsın, M., (2020), Bir Metin Madenciliği Uygulaması: Vosvıewer, Eskişehir Teknik Üniversitesi Bilim ve Teknoloji Dergisi B-Teorik Bilimler 8 (2), 344-354.
  • Becan C., (2021), Reklamda Bir Sosyal Duygu Olarak Hüzün Çekiciliği: Pandemi Döneminde Yayınlanan Reklamlara Yönelik Duygu Analizi, . The Turkish Online Journal of Design, Art and Communication-TOJDAC, Volume 11 Issue 4, p.1239-1262.
  • Belber B. G. (2017). Göstergebilimsel Analiz Yöntemiyle Turizm Tanıtım Filmi Analizi, 1. Uluslararası İpekyolu Akademik Çalışmalar Sempozyumu, 103-115.
  • Benghozi, P. J., Benhamou, F. (2010). The Long Tail: Myth or Reality?. International Journal of Arts Management, 43-53.
  • Brynjolfsson, E., Hu, Y., Smith, M. D. (2003). Consumer Surplus in The Digital Economy: Estimating The Value Of Increased Product Variety At Online Booksellers. Management Science, 49(11), 1580-1596.
  • Brynjolfsson, E., Hu, Y., Smith, M. D. (2010). Research commentary-long Tails vs. Superstars: The Effect Of Information Technology On Product Variety And Sales Concentration Patterns. Information Systems Research, 21(4), 736-747.
  • Çağlar B., (2012), Bir İletişim Biçimi Olarak Göstergebilim, EUL Journal of Social Sciences (III:II) LAÜ Sosyal Bilimler Dergisi.
  • Çamdereli, M. (2006). Reklam Arası, Konya: Tablet Kitabevi.
  • Çelik, S.. (2020). “The Investigation of Shakespeare Corpus with Text Mining.” MANAS Journal of Social Studies 1343–57.
  • Debortoli, Stefan, Oliver Müller, Iris Junglas, and Jan vom Brocke. (2016). “Text Mining for Information Systems Researchers: An Annotated Topic Modeling Tutorial.” Communications of the Association for Information Systems 39:110–35.
  • Dolgun M.Ö., Özdemir T.G., Oğuz D, (2009), Veri Madenciliği’nde Yapısal Olmayan Verinin Analizi: Metin ve Web Madenciliği, İstatistikçiler Dergisi 2 (2009) 48-58.
  • Elden, M., Ulukök, Ö. ve Yeygel, S. (2009). Şimdi Reklamlar, İstanbul: İletişim Yay., 4. Baskı.
  • Gaikwad, S. V., Chaugule, A., Patil, P. (2014). Text Mining Methods and Techniques. International Journal of Computer Applications, 85(17), 42-45
  • Gürsakal, N., Çelik S., (2021). Büyük Veri ve Pazarlama. Birinci Baskı. Bursa: Dora Yayınevi
  • Gürsakal, N., Çelik S., Özdemir S., (2023). High-Frequency Words Have Higher Frequencies in Turkish Social Sciences Article, Quality & Quantity, 57(2): 1865–87.
  • Gürsözlü, S. (2006), Reklam Sektöründe İllüstrasyon ve Fotoğraf Kullanımının Tasarım Çözümlemelerinde Gerekliliği, (Yayımlanmamış Yüksek Lisans Tezi). İstanbul: Marmara Üniversitesi, Grafik Sanatlar Enstitüsü.
  • He, Wu, Shenghua Zha, and Ling Li. (2013). “Social Media Competitive Analysis and Text Mining: A Case Study in the Pizza Industry.” International Journal of Information Management 33(3): 464–72.
  • Hestroni, A., (2000). “The Relationship between Values and Appeals in Israeli Advertising: A Smallest Space Analysis”, Journal of Advertising, 29 (3), 55 – 68.
  • Hirschberg, Julia, and Christopher D. Manning. (2015). “Advances in Natural Language Processing.” Science 349(6245):261–66. https://bilgisayarkavramlari.com/2014/06/15/metin-madenciligi-text-mining/
  • Huang, M. H., Rust, R. T. (2017). Technology-driven service strategy. Journal of the Academy of Marketing Science, 45(6), 906-924. Introduction to Text Mining (2008), SPSS Inc.
  • Joseph, George, Vinu Varghese. (2019). “Analyzing Airbnb Customer Experience Feedback Using Text Mining”, 147–62 in Big Data and Innovation in Tourism, Travel, and Hospitality. Singapore: Springer Singapore.
  • Kang, Yue, Zhao Cai, Chee-Wee Tan, Qian Huang, and Hefu Liu. (2020). “Natural Language Processing (NLP) in Management Research: A Literature Review.” Journal of Management Analytics 7(2):139–72.
  • Karanikas H, Theodoulidis B. (2002), Knowledge Discovery in Text And Text Mining Software. Manchester: Centre for Research in Information Management, Department of Computation, UMIST.
  • Kariri, Elham, Hassen Louati, Ali Louati, and Fatma Masmoudi. (2023). “Exploring the Advancements and Future Research Directions of Artificial Neural Networks: A Text Mining Approach.” Applied Sciences 13(5):3186.
  • Kemp, E., Bui, M., Chapa, S. (2012). “The Role of Advertising in Consumer Emotion Management”, International Journal of Advertising, 31 (2), 339 – 353.
  • Kemp, E., Chapa, S., Kopp, S. W. (2013). “Regulating Emotions in Advertising: Examining the Effects of Sadness and Anxiety on Hedonic Product Advertisements”, Journal of Current Issues & Research in Advertising, 34 (1), 135 – 150.
  • Killian, K. E. (2015). The Long Tail and Demand Creation in the Legal Marketplace. Hastings Bus. LJ, 11, 157.
  • Kim, Yong-Mi, Delen D., (2018). “Medical Informatics Research Trend Analysis: A Text Mining Approach.” Health Informatics Journal, 24(4):432 - 452.
  • Krallinger, Martin, Alfonso Valencia, and Lynette Hirschman. (2008). “Linking Genes to Literature: Text Mining, Information Extraction, and Retrieval Applications for Biology.” Genome Biology 9(S2):S8.
  • Kurt, L., (2023). Bilgi Yönetiminde Veri Ve Metin Madenciliği: Bir Dijital İçerik Analizi Uygulaması, Türkiye Cumhuriyeti Ankara Üniversitesi Sosyal Bilimler Enstitüsü, Bilgi Ve Belge Yönetimi Anabilim Dalı, Doktora Tezi, Ankara.
  • Mooij, Marieke de, (1998). Global Marketing and Advertising: Understanding Cultural Paradoxes, London: Sage Publications.
  • Mostafa, Mohamed M. 2013. “More than Words: Social Networks’ Text Mining for Consumer Brand Sentiments.” Expert Systems with Applications 40(10):4241- 51.
  • Parsa, S., Parsa A. F. (2002) .Göstergebilim Çözümlemeleri, İzmir: Ege Üniversitesi Basımevi
  • Qiu, Qinjun, Zhong Xie, Liang Wu, and Liufeng Tao. (2020). “Automatic Spatiotemporal and Semantic Information Extraction from Unstructured Geoscience Reports Using Text Mining Techniques.” Earth Science Informatics 13(4):1393–1410.
  • Rai, A. (2019). What is Text Mining: Techniques and Applications. upgrad.com
  • Saygısever M., 2019, Metin Madenciliği Nedir? https://medium.com/@minelsaygisever/metin-madenciliği.
  • Sriram, Bharath, Dave Fuhry, Engin Demir, Hakan Ferhatosmanoglu, and Murat Demirbas. (2010). “Short Text Classification in Twitter to Improve Information Filtering.” in Proceedings of the 33rd international ACM SIGIR conference on Research and development in information retrieval. 841–42 New York,
  • Storey, Veda C., Daniel E. O’Leary. (2022). “Text Analysis of Evolving Emotions and Sentiments in COVID-19 Twitter Communication.” Cognitive Computation.
  • Su, N., Levina, N., & Ross, J. W. (2015). The long-tail strategy for IT outsourcing. MIT Sloan Management Review.
  • Şeker S.E., (2015), Metin Madenciliği (Text Mining), YBS Ansiklopedi, Cilt 2, Sayı 3, https://ybsansiklopedi.com/wp-content/uploads/2015/08/MetinMadenciligi30_32.pdf
  • Truyens, M. ve Eecke, P. V. (2014). Legal aspects of text mining. Comput. Law Secur. Rev., 2182- 2186.
  • Tseng, Yuen Hsien, Chi Jen Lin, and Yu I. Lin. (2007). “Text Mining Techniques for Patent Analysis.” Information Processing & Management 43(5):1216–47.
  • Tuncer E.S., 2020, Göstergebilimin Çözümleme Modelleri Işığında Reklam Anlatıları, Atatürk İletişim Dergisi Sayı, 20, 73-102.
  • Tyagi, N. (2021). Top 7 Text Mining Techniques. analyticssteps.com:
  • Vanhala, Mika, Chien Lu, Jaakko Peltonen, Sanna Sundqvist, Jyrki Nummenmaa, and Kalervo Järvelin. (2020). “The Usage of Large Data Sets in Online Consumer Behaviour: A Bibliometric and Computational Text-Mining–Driven Analysis of Previous Research.” Journal of Business Research 106:46–59.
  • W. Fan, L. Wallace, S. Rich, Z. Zhang. (2006), Tapping into the power of text mining, Communications of ACM, 49(9), 76-82.
  • Weiss, S. M., Indurkhya, N., Zhang, T. (2015). Fundamentals of Predictive Text Mining (2b.). New York, US: Springer.
  • Yücel, T., (2008). Yapısalcılık. İstanbul: Can Yayınları.
  • Zhu, Xiaoqian, Xiang Ao, Zidi Qin, Yanpeng Chang, Yang Liu, Qing He, and Jianping Li. (2021). “Intelligent Financial Fraud Detection Practices in Post-Pandemic Era.” The Innovation 2(4):100176.

METİN MADENCİLİĞİ YÖNTEMİYLE LAYS REKLAMLARINDA KULLANILAN KELİMELERİN İNCELENMESİ

Yıl 2023, Cilt: 3 Sayı: 2, 24 - 37, 20.10.2023

Öz

Bu çalışma, metin madenciliği yöntemlerini kullanarak LAYS patates cipsi reklamlarının içeriğini incelemeyi amaçlamıştır. Araştırma, 2019-2022 yılları arasında çekilmiş 21 LAYS televizyon reklamını kapsamış ve reklamlarda geçen kelimelerin analizini gerçekleştirmiştir. Elde edilen analiz sonuçlarına göre, LAYS reklamlarında en sık kullanılan kelimelerin “Lays”, “Çıtır”, “bir”, “saniye” ve “keyfi” olduğu belirlenmiştir. Bu sonuçlar, markanın adını vurgulama ve tüketicide marka bağlılığı oluşturma stratejilerini yansıtmaktadır. Ayrıca, reklamlarda kullanılan kelimelerin frekans dağılımı incelendiğinde, verilerin Uzun Kuyruk Dağılımına uygun olduğu gözlemlenmiştir. Bu da LAYS firmasının niş pazarlara odaklanma, müşteri sadakatini artırma, veri analitiği, kişiselleştirme, uzun vadeli başarı ve rekabet üstünlüğü elde etme stratejilerini desteklediğini göstermektedir. Sonuç olarak, bu çalışma LAYS reklamlarının metin içeriğini analiz ederek markanın pazarlama stratejilerine ve reklam çekiciliğine dair önemli içgörüler sunmuştur. Uzun Kuyruk Dağılımı stratejisinin kullanılmasının, markanın başarısını artırabileceği ve rekabet avantajı sağlayabileceği sonucuna varılmıştır. Bu bulgular, marka yöneticileri ve pazarlama uzmanları için önem olacağı düşünülen bir rehber sunmaktadır.

Kaynakça

  • Ağca Y., Gündüz C., (2023), Türkiye’deki Otel Konuk Yorumları ve Puanlarının Metin Madenciliği ile Analizi, Yönetim Ve Ekonomi, Cilt:30 Sayı:2 Manisa CBÜ İ.İ.B.F.
  • Ağca, Y. (2021). Alternatif Veri Elde Etme Yöntemi, Web Madenciliği: Otel Oda Fiyatlarının Zamansal Analizi. Çanakkale Onsekiz Mart Üni. Yönetim Bilimleri Dergisi, 19(42), 1013-1034
  • Allahyari, Mehdi, Seyedamin Pouriyeh, Mehdi Assefi, Saied Safaei, Elizabeth D. Trippe, Juan B. Gutierrez, and Krys Kochut. (2017). “A Brief Survey of Text Mining: Classification, Clustering and Extraction Techniques.”, KDD Bigdas, August 2017, Halifax, Canada.
  • Amoako-Gyampah, K., Acquaah, M. (2008). Manufacturing Strategy, Competitive Strategy And Firm Performance: An Empirical Study In A Developing Economy Environment. International Journal Of Production Economics, 111(2), 575-592.
  • Argamon, Shlomo, Casey Whitelaw, Paul Chase, Sobhan Raj Hota, Navendu Garg, and Shlomo Levitan. (2007). “Stylistic Text Classification Using Functional Lexical Features.” Journal of the American Society for Information Science and Technology 58(6):802–22.
  • Artsın, M., (2020), Bir Metin Madenciliği Uygulaması: Vosvıewer, Eskişehir Teknik Üniversitesi Bilim ve Teknoloji Dergisi B-Teorik Bilimler 8 (2), 344-354.
  • Becan C., (2021), Reklamda Bir Sosyal Duygu Olarak Hüzün Çekiciliği: Pandemi Döneminde Yayınlanan Reklamlara Yönelik Duygu Analizi, . The Turkish Online Journal of Design, Art and Communication-TOJDAC, Volume 11 Issue 4, p.1239-1262.
  • Belber B. G. (2017). Göstergebilimsel Analiz Yöntemiyle Turizm Tanıtım Filmi Analizi, 1. Uluslararası İpekyolu Akademik Çalışmalar Sempozyumu, 103-115.
  • Benghozi, P. J., Benhamou, F. (2010). The Long Tail: Myth or Reality?. International Journal of Arts Management, 43-53.
  • Brynjolfsson, E., Hu, Y., Smith, M. D. (2003). Consumer Surplus in The Digital Economy: Estimating The Value Of Increased Product Variety At Online Booksellers. Management Science, 49(11), 1580-1596.
  • Brynjolfsson, E., Hu, Y., Smith, M. D. (2010). Research commentary-long Tails vs. Superstars: The Effect Of Information Technology On Product Variety And Sales Concentration Patterns. Information Systems Research, 21(4), 736-747.
  • Çağlar B., (2012), Bir İletişim Biçimi Olarak Göstergebilim, EUL Journal of Social Sciences (III:II) LAÜ Sosyal Bilimler Dergisi.
  • Çamdereli, M. (2006). Reklam Arası, Konya: Tablet Kitabevi.
  • Çelik, S.. (2020). “The Investigation of Shakespeare Corpus with Text Mining.” MANAS Journal of Social Studies 1343–57.
  • Debortoli, Stefan, Oliver Müller, Iris Junglas, and Jan vom Brocke. (2016). “Text Mining for Information Systems Researchers: An Annotated Topic Modeling Tutorial.” Communications of the Association for Information Systems 39:110–35.
  • Dolgun M.Ö., Özdemir T.G., Oğuz D, (2009), Veri Madenciliği’nde Yapısal Olmayan Verinin Analizi: Metin ve Web Madenciliği, İstatistikçiler Dergisi 2 (2009) 48-58.
  • Elden, M., Ulukök, Ö. ve Yeygel, S. (2009). Şimdi Reklamlar, İstanbul: İletişim Yay., 4. Baskı.
  • Gaikwad, S. V., Chaugule, A., Patil, P. (2014). Text Mining Methods and Techniques. International Journal of Computer Applications, 85(17), 42-45
  • Gürsakal, N., Çelik S., (2021). Büyük Veri ve Pazarlama. Birinci Baskı. Bursa: Dora Yayınevi
  • Gürsakal, N., Çelik S., Özdemir S., (2023). High-Frequency Words Have Higher Frequencies in Turkish Social Sciences Article, Quality & Quantity, 57(2): 1865–87.
  • Gürsözlü, S. (2006), Reklam Sektöründe İllüstrasyon ve Fotoğraf Kullanımının Tasarım Çözümlemelerinde Gerekliliği, (Yayımlanmamış Yüksek Lisans Tezi). İstanbul: Marmara Üniversitesi, Grafik Sanatlar Enstitüsü.
  • He, Wu, Shenghua Zha, and Ling Li. (2013). “Social Media Competitive Analysis and Text Mining: A Case Study in the Pizza Industry.” International Journal of Information Management 33(3): 464–72.
  • Hestroni, A., (2000). “The Relationship between Values and Appeals in Israeli Advertising: A Smallest Space Analysis”, Journal of Advertising, 29 (3), 55 – 68.
  • Hirschberg, Julia, and Christopher D. Manning. (2015). “Advances in Natural Language Processing.” Science 349(6245):261–66. https://bilgisayarkavramlari.com/2014/06/15/metin-madenciligi-text-mining/
  • Huang, M. H., Rust, R. T. (2017). Technology-driven service strategy. Journal of the Academy of Marketing Science, 45(6), 906-924. Introduction to Text Mining (2008), SPSS Inc.
  • Joseph, George, Vinu Varghese. (2019). “Analyzing Airbnb Customer Experience Feedback Using Text Mining”, 147–62 in Big Data and Innovation in Tourism, Travel, and Hospitality. Singapore: Springer Singapore.
  • Kang, Yue, Zhao Cai, Chee-Wee Tan, Qian Huang, and Hefu Liu. (2020). “Natural Language Processing (NLP) in Management Research: A Literature Review.” Journal of Management Analytics 7(2):139–72.
  • Karanikas H, Theodoulidis B. (2002), Knowledge Discovery in Text And Text Mining Software. Manchester: Centre for Research in Information Management, Department of Computation, UMIST.
  • Kariri, Elham, Hassen Louati, Ali Louati, and Fatma Masmoudi. (2023). “Exploring the Advancements and Future Research Directions of Artificial Neural Networks: A Text Mining Approach.” Applied Sciences 13(5):3186.
  • Kemp, E., Bui, M., Chapa, S. (2012). “The Role of Advertising in Consumer Emotion Management”, International Journal of Advertising, 31 (2), 339 – 353.
  • Kemp, E., Chapa, S., Kopp, S. W. (2013). “Regulating Emotions in Advertising: Examining the Effects of Sadness and Anxiety on Hedonic Product Advertisements”, Journal of Current Issues & Research in Advertising, 34 (1), 135 – 150.
  • Killian, K. E. (2015). The Long Tail and Demand Creation in the Legal Marketplace. Hastings Bus. LJ, 11, 157.
  • Kim, Yong-Mi, Delen D., (2018). “Medical Informatics Research Trend Analysis: A Text Mining Approach.” Health Informatics Journal, 24(4):432 - 452.
  • Krallinger, Martin, Alfonso Valencia, and Lynette Hirschman. (2008). “Linking Genes to Literature: Text Mining, Information Extraction, and Retrieval Applications for Biology.” Genome Biology 9(S2):S8.
  • Kurt, L., (2023). Bilgi Yönetiminde Veri Ve Metin Madenciliği: Bir Dijital İçerik Analizi Uygulaması, Türkiye Cumhuriyeti Ankara Üniversitesi Sosyal Bilimler Enstitüsü, Bilgi Ve Belge Yönetimi Anabilim Dalı, Doktora Tezi, Ankara.
  • Mooij, Marieke de, (1998). Global Marketing and Advertising: Understanding Cultural Paradoxes, London: Sage Publications.
  • Mostafa, Mohamed M. 2013. “More than Words: Social Networks’ Text Mining for Consumer Brand Sentiments.” Expert Systems with Applications 40(10):4241- 51.
  • Parsa, S., Parsa A. F. (2002) .Göstergebilim Çözümlemeleri, İzmir: Ege Üniversitesi Basımevi
  • Qiu, Qinjun, Zhong Xie, Liang Wu, and Liufeng Tao. (2020). “Automatic Spatiotemporal and Semantic Information Extraction from Unstructured Geoscience Reports Using Text Mining Techniques.” Earth Science Informatics 13(4):1393–1410.
  • Rai, A. (2019). What is Text Mining: Techniques and Applications. upgrad.com
  • Saygısever M., 2019, Metin Madenciliği Nedir? https://medium.com/@minelsaygisever/metin-madenciliği.
  • Sriram, Bharath, Dave Fuhry, Engin Demir, Hakan Ferhatosmanoglu, and Murat Demirbas. (2010). “Short Text Classification in Twitter to Improve Information Filtering.” in Proceedings of the 33rd international ACM SIGIR conference on Research and development in information retrieval. 841–42 New York,
  • Storey, Veda C., Daniel E. O’Leary. (2022). “Text Analysis of Evolving Emotions and Sentiments in COVID-19 Twitter Communication.” Cognitive Computation.
  • Su, N., Levina, N., & Ross, J. W. (2015). The long-tail strategy for IT outsourcing. MIT Sloan Management Review.
  • Şeker S.E., (2015), Metin Madenciliği (Text Mining), YBS Ansiklopedi, Cilt 2, Sayı 3, https://ybsansiklopedi.com/wp-content/uploads/2015/08/MetinMadenciligi30_32.pdf
  • Truyens, M. ve Eecke, P. V. (2014). Legal aspects of text mining. Comput. Law Secur. Rev., 2182- 2186.
  • Tseng, Yuen Hsien, Chi Jen Lin, and Yu I. Lin. (2007). “Text Mining Techniques for Patent Analysis.” Information Processing & Management 43(5):1216–47.
  • Tuncer E.S., 2020, Göstergebilimin Çözümleme Modelleri Işığında Reklam Anlatıları, Atatürk İletişim Dergisi Sayı, 20, 73-102.
  • Tyagi, N. (2021). Top 7 Text Mining Techniques. analyticssteps.com:
  • Vanhala, Mika, Chien Lu, Jaakko Peltonen, Sanna Sundqvist, Jyrki Nummenmaa, and Kalervo Järvelin. (2020). “The Usage of Large Data Sets in Online Consumer Behaviour: A Bibliometric and Computational Text-Mining–Driven Analysis of Previous Research.” Journal of Business Research 106:46–59.
  • W. Fan, L. Wallace, S. Rich, Z. Zhang. (2006), Tapping into the power of text mining, Communications of ACM, 49(9), 76-82.
  • Weiss, S. M., Indurkhya, N., Zhang, T. (2015). Fundamentals of Predictive Text Mining (2b.). New York, US: Springer.
  • Yücel, T., (2008). Yapısalcılık. İstanbul: Can Yayınları.
  • Zhu, Xiaoqian, Xiang Ao, Zidi Qin, Yanpeng Chang, Yang Liu, Qing He, and Jianping Li. (2021). “Intelligent Financial Fraud Detection Practices in Post-Pandemic Era.” The Innovation 2(4):100176.
Toplam 54 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Ekonometrik ve İstatistiksel Yöntemler, Reklam
Bölüm Araştırma Makalesi
Yazarlar

Bilge Doğanlı

Erken Görünüm Tarihi 9 Ekim 2024
Yayımlanma Tarihi 20 Ekim 2023
Yayımlandığı Sayı Yıl 2023 Cilt: 3 Sayı: 2

Kaynak Göster

APA Doğanlı, B. (2023). METİN MADENCİLİĞİ YÖNTEMİYLE LAYS REKLAMLARINDA KULLANILAN KELİMELERİN İNCELENMESİ. Uluslararası İktisadi Ve İdari Akademik Araştırmalar Dergisi, 3(2), 24-37.