Research Article
BibTex RIS Cite

Thermal management analysis with different PCMs in Sodium-Ion batteries

Year 2024, , 445 - 461, 18.09.2024
https://doi.org/10.58559/ijes.1485515

Abstract

The advent of modern technology has led to a significant increase in the utilisation of rechargeable secondary batteries. Despite the sustainability of lithium-ion (Li-ion) batteries, the limited availability of lithium has driven research into alternative energy storage technologies. Sodium-ion (Na-ion) batteries, as a potential alternative to Li-ion batteries, have emerged as a highly promising contender. However, for these batteries to become industrially viable, certain properties such as energy and power density need to be enhanced. To address this issue, batteries have been a focus of research, and battery thermal management systems have been developed. These systems aim to evaluate battery performance, which is strongly influenced by temperature. Effective thermal management ensures that the battery operates within the optimal temperature range. This study models a pouch-type battery and evaluates the effects of phase changing materials (PCM) on battery temperature control. Comparative analysis is conducted using different PCMs to understand their impact. The study analyses the battery's response to specific temperature ranges and assesses how different PCMs affect battery cooling performance. The results provide critical insights for ensuring efficient battery operation. Furthermore, this research supports the broader adoption of Na-ion batteries in industrial applications and contributes to the development of sustainable energy storage systems.

References

  • [1] Goikolea E, Palomares V, Wang S, Larramendi ID, Guo X, Wang G. Na-Ion Batteries—Approaching Old and New Challenges. Adv Energy Mater 2020; 10(44).
  • [2] De La Llave E, Borgel V, Park KJ, Hwang JY, Sun YK, Hartmann P, Chesneau FF, Aurbach D. Comparison between Na-Ion and Li-Ion Cells: Understanding the Critical Role of the Cathodes Stability and the Anodes Pretreatment on the Cells Behavior. ACS Appl Mater Interfaces 2016; 8(3): 1867–1875.
  • [3] Hwang JY, Myung ST, Sun YK. Sodium-ion batteries: Present and future. Chemical Society Reviews 2017; 46(12): 3529–3614.
  • [4] Ibrahim H, Ilinca A, Perron J. Energy storage systems-Characteristics and comparisons. Renewable and Sustainable Energy Reviews 2008; 12(5): 1221–1250.
  • [5] Slater MD, Kim D, Lee E, Johnson CS. Sodium-ion batteries. Adv Funct Mater 2013; 23(8): 947–958.
  • [6] Yabuuchi N, Kubota K, Dahbi M, Komaba S. Research development on sodium-ion batteries. Chem Rev 2014; 114(23): 11636-11682.
  • [7] Cheng DL, Yang LC, Zhu M. High-performance anode materials for Na-ion batteries. Rare Met 2018; 37(3): 167-180. doi: 10.1007/s12598-018-1015-0.
  • [8] ÖZSİN G. Na-iyon Pillerin Anotlarında Karbon Nanoyapılarının Kullanımı Üzerine Bir Derleme. Politeknik Derg 2021; 24(3): 1151-1170.
  • [9] Kondou H, Kim J, Watanabe H. Thermal analysis on Na plating in sodium ion battery. Electrochemistry 2017; 85(10): 647-649.
  • [10] Bahru R, Zamri MFM, Shamsuddin AH, Mohamed MA. Simulation design for thermal model from various materials in electronic devices: A review. Numer Heat Transf A Appl 2022; 82(10): 640-665.
  • [11] Çetin İ, Sezici E, Karabulut M, Avci E, Polat F. A comprehensive review of battery thermal management systems for electric vehicles. Proc Inst Mech Eng E J Process Mech Eng 2023; 237(3): 989-1004.
  • [12] Hussain M, Khan MK, Pathak M. Thermal analysis of phase change material encapsulated li-ion battery pack using multi-scale multi-dimensional framework. J Energy Storage 2023; 65: 107290.
  • [13] Rangappa R, Rajoo S, Samin PM, Rajesha S. Compactness analysis of PCM-based cooling systems for lithium battery-operated vehicles. Int J Energy Environ Eng 2020; 11(2): 247-264.
  • [14] Ianniciello L, Biwolé PH, Achard P. Electric vehicles batteries thermal management systems employing phase change materials. J Power Sources 2018; 378: 383-403.
  • [15] Lv Y, Yang X, Li X, Zhang G, Wang Z, Yang C. Experimental study on a novel battery thermal management technology based on low density polyethylene-enhanced composite phase change materials coupled with low fins. Appl Energy 2016; 178: 376-382.
  • [16] Feng X, Ouyang M, Liu X, Lu L, Xia Y, He X. Thermal runaway mechanism of lithium ion battery for electric vehicles: A review. Energy Storage Mater 2018; 10: 246-267.
  • [17] Hu YS, Lu Y. 2019 Nobel Prize for the Li-Ion Batteries and New Opportunities and Challenges in Na-Ion Batteries. ACS Energy Lett 2019; 4(11): 2689-2690.
  • [18] Rao Z, Wang S. A review of power battery thermal energy management. Renew Sustain Energy Rev 2011; 15(9): 4554-4571.
  • [19] Sharma A, Dewangan SK. Performance analysis of melting behavior of phase change material encapsulated within differently shaped macro-capsule. Int J Energy Environ Eng 2022; 13(1): 377-394.
  • [20] Li C, Yu H, Song Y, Wang M, Liu Z. A n-octadecane/hierarchically porous TiO2 form-stable PCM for thermal energy storage. Renew Energy 2020; 145: 1465-1473.
  • [21] Wu X, Zhu Z, Zhang H, Xu S, Fang Y, Yan Z. Structural optimization of light-weight battery module based on hybrid liquid cooling with high latent heat PCM. Int J Heat Mass Transf 2020; 163: 120495.
Year 2024, , 445 - 461, 18.09.2024
https://doi.org/10.58559/ijes.1485515

Abstract

References

  • [1] Goikolea E, Palomares V, Wang S, Larramendi ID, Guo X, Wang G. Na-Ion Batteries—Approaching Old and New Challenges. Adv Energy Mater 2020; 10(44).
  • [2] De La Llave E, Borgel V, Park KJ, Hwang JY, Sun YK, Hartmann P, Chesneau FF, Aurbach D. Comparison between Na-Ion and Li-Ion Cells: Understanding the Critical Role of the Cathodes Stability and the Anodes Pretreatment on the Cells Behavior. ACS Appl Mater Interfaces 2016; 8(3): 1867–1875.
  • [3] Hwang JY, Myung ST, Sun YK. Sodium-ion batteries: Present and future. Chemical Society Reviews 2017; 46(12): 3529–3614.
  • [4] Ibrahim H, Ilinca A, Perron J. Energy storage systems-Characteristics and comparisons. Renewable and Sustainable Energy Reviews 2008; 12(5): 1221–1250.
  • [5] Slater MD, Kim D, Lee E, Johnson CS. Sodium-ion batteries. Adv Funct Mater 2013; 23(8): 947–958.
  • [6] Yabuuchi N, Kubota K, Dahbi M, Komaba S. Research development on sodium-ion batteries. Chem Rev 2014; 114(23): 11636-11682.
  • [7] Cheng DL, Yang LC, Zhu M. High-performance anode materials for Na-ion batteries. Rare Met 2018; 37(3): 167-180. doi: 10.1007/s12598-018-1015-0.
  • [8] ÖZSİN G. Na-iyon Pillerin Anotlarında Karbon Nanoyapılarının Kullanımı Üzerine Bir Derleme. Politeknik Derg 2021; 24(3): 1151-1170.
  • [9] Kondou H, Kim J, Watanabe H. Thermal analysis on Na plating in sodium ion battery. Electrochemistry 2017; 85(10): 647-649.
  • [10] Bahru R, Zamri MFM, Shamsuddin AH, Mohamed MA. Simulation design for thermal model from various materials in electronic devices: A review. Numer Heat Transf A Appl 2022; 82(10): 640-665.
  • [11] Çetin İ, Sezici E, Karabulut M, Avci E, Polat F. A comprehensive review of battery thermal management systems for electric vehicles. Proc Inst Mech Eng E J Process Mech Eng 2023; 237(3): 989-1004.
  • [12] Hussain M, Khan MK, Pathak M. Thermal analysis of phase change material encapsulated li-ion battery pack using multi-scale multi-dimensional framework. J Energy Storage 2023; 65: 107290.
  • [13] Rangappa R, Rajoo S, Samin PM, Rajesha S. Compactness analysis of PCM-based cooling systems for lithium battery-operated vehicles. Int J Energy Environ Eng 2020; 11(2): 247-264.
  • [14] Ianniciello L, Biwolé PH, Achard P. Electric vehicles batteries thermal management systems employing phase change materials. J Power Sources 2018; 378: 383-403.
  • [15] Lv Y, Yang X, Li X, Zhang G, Wang Z, Yang C. Experimental study on a novel battery thermal management technology based on low density polyethylene-enhanced composite phase change materials coupled with low fins. Appl Energy 2016; 178: 376-382.
  • [16] Feng X, Ouyang M, Liu X, Lu L, Xia Y, He X. Thermal runaway mechanism of lithium ion battery for electric vehicles: A review. Energy Storage Mater 2018; 10: 246-267.
  • [17] Hu YS, Lu Y. 2019 Nobel Prize for the Li-Ion Batteries and New Opportunities and Challenges in Na-Ion Batteries. ACS Energy Lett 2019; 4(11): 2689-2690.
  • [18] Rao Z, Wang S. A review of power battery thermal energy management. Renew Sustain Energy Rev 2011; 15(9): 4554-4571.
  • [19] Sharma A, Dewangan SK. Performance analysis of melting behavior of phase change material encapsulated within differently shaped macro-capsule. Int J Energy Environ Eng 2022; 13(1): 377-394.
  • [20] Li C, Yu H, Song Y, Wang M, Liu Z. A n-octadecane/hierarchically porous TiO2 form-stable PCM for thermal energy storage. Renew Energy 2020; 145: 1465-1473.
  • [21] Wu X, Zhu Z, Zhang H, Xu S, Fang Y, Yan Z. Structural optimization of light-weight battery module based on hybrid liquid cooling with high latent heat PCM. Int J Heat Mass Transf 2020; 163: 120495.
There are 21 citations in total.

Details

Primary Language English
Subjects Energy
Journal Section Research Article
Authors

Utku Canci Matur 0000-0001-6342-5645

Cansu Tüysüz 0009-0004-9153-1268

Ali Köse 0000-0002-0426-5159

Publication Date September 18, 2024
Submission Date May 17, 2024
Acceptance Date July 24, 2024
Published in Issue Year 2024

Cite

APA Matur, U. C., Tüysüz, C., & Köse, A. (2024). Thermal management analysis with different PCMs in Sodium-Ion batteries. International Journal of Energy Studies, 9(3), 445-461. https://doi.org/10.58559/ijes.1485515
AMA Matur UC, Tüysüz C, Köse A. Thermal management analysis with different PCMs in Sodium-Ion batteries. Int J Energy Studies. September 2024;9(3):445-461. doi:10.58559/ijes.1485515
Chicago Matur, Utku Canci, Cansu Tüysüz, and Ali Köse. “Thermal Management Analysis With Different PCMs in Sodium-Ion Batteries”. International Journal of Energy Studies 9, no. 3 (September 2024): 445-61. https://doi.org/10.58559/ijes.1485515.
EndNote Matur UC, Tüysüz C, Köse A (September 1, 2024) Thermal management analysis with different PCMs in Sodium-Ion batteries. International Journal of Energy Studies 9 3 445–461.
IEEE U. C. Matur, C. Tüysüz, and A. Köse, “Thermal management analysis with different PCMs in Sodium-Ion batteries”, Int J Energy Studies, vol. 9, no. 3, pp. 445–461, 2024, doi: 10.58559/ijes.1485515.
ISNAD Matur, Utku Canci et al. “Thermal Management Analysis With Different PCMs in Sodium-Ion Batteries”. International Journal of Energy Studies 9/3 (September 2024), 445-461. https://doi.org/10.58559/ijes.1485515.
JAMA Matur UC, Tüysüz C, Köse A. Thermal management analysis with different PCMs in Sodium-Ion batteries. Int J Energy Studies. 2024;9:445–461.
MLA Matur, Utku Canci et al. “Thermal Management Analysis With Different PCMs in Sodium-Ion Batteries”. International Journal of Energy Studies, vol. 9, no. 3, 2024, pp. 445-61, doi:10.58559/ijes.1485515.
Vancouver Matur UC, Tüysüz C, Köse A. Thermal management analysis with different PCMs in Sodium-Ion batteries. Int J Energy Studies. 2024;9(3):445-61.