Research Article
BibTex RIS Cite

Year 2025, Volume: 10 Issue: 4, 1485 - 1510, 29.12.2025
https://doi.org/10.58559/ijes.1759569

Abstract

References

  • [1] Adeyemi, O. I., & Hunt, L. C. Modelling OECD industrial energy demand: Asymmetric price responses and energy-saving technical change. Energy Economics 2007, 29(4), 693-709.
  • [2] Ağbulut, Ü., Ceylan, İ., Gürel, A. E., & Ergün, A. The history of greenhouse gas emissions and their relationship with Turkey's nuclear energy policy. International Journal of Ambient Energy 2021, 42(12), 1447-1455.
  • [3] Akber, M. Z., Thaheem, M. J., & Arshad, H. . Life cycle sustainability assessment of electricity generation in Pakistan: Policy regime for a sustainable energy mix. Energy Policy 2017, 111, 111-126.
  • [4] Akcay, Ü., & Güngen, A. R. The making of Turkey's 2018-2019 economic crisis (No. 120/2019). Working Paper 2019.
  • [5] Alharbi, S. S., Al Mamun, M., Boubaker, S., & Rizvi, S. K. A. . Green finance and renewable energy: A worldwide evidence. Energy Economics 2023, 118, 106499.
  • [6] Al-Kharusi, S., & Murthy, S. R. Financial stability of GCC banks in the COVID-19 Crisis: A simulation approach. The Journal of Asian Finance, Economics and Business 2020, 7(12), 337-344.
  • [7] Al-Kharusi, S., & Murthy, S. R. . Financial stability of GCC banks in the COVID-19 Crisis: A simulation approach. The Journal of Asian Finance, Economics and Business 2020, 7(12), 337-344.
  • [8] Ambec, S., & Doucet, J. A. Decentralising hydropower production. Canadian Journal of Economics/Revue canadienne d'économique 2003, 36(3), 587-607.
  • [9] Ang, B. W., Zhou, P., & Tay, L. P. Potential for reducing global carbon emissions from electricity production—A benchmarking analysis. Energy Policy 2011, 39(5), 2482-2489.
  • [10] Aziz, Y., Janjua, A. K., Hassan, M., Anwar, M., Kanwal, S., & Yousif, M. Techno-economic analysis of PV systems installed using innovative strategies for smart, sustainable agriculture farms. Environment, Development and Sustainability 2024, 26(2), 5003-5024.
  • [11] Azzopardi, B., Emmott, C. J., Urbina, A., Krebs, F. C., Mutale, J., & Nelson, J. . Economic assessment of solar electricity production from organic-based photovoltaic modules in a domestic environment. Energy & Environmental Science 2011, 4(10), 3741-3753.
  • [12] Bain, D. M., & Acker, T. L. Hydropower impacts on electrical system production costs in the southwest United States. Energies 2018, 11(2), 368.
  • [13] Baležentis, T., & Streimikiene, D. Multi-criteria ranking of energy generation scenarios with Monte Carlo simulation. Applied Energy 2017, 185, 862-871.
  • [14] Bonate, P. L. A brief introduction to Monte Carlo simulation. Clinical pharmacokinetics 2001, 40, 15-22.
  • [15] Boussaa, Y., Dodoo, A., Nguyen, T., & Rupar-Gadd, K. Comprehensive renovation of a multi-apartment building in Sweden: techno-economic analysis with respect to different economic scenarios. Building Research & Information 2024, 52(4), 463-478.
  • [16] Brunekreeft, G. (2003) Regulation and competition policy in the electricity market: economic analysis and German experience. Baden-Baden: Nomos.
  • [17] Budzianowski, W. M. Critical evaluation of low-carbon electricity production technologies. Rynek Energii 2011, 95(4), 127-133.
  • [18] Bulut, U., & Muratoglu, G. Renewable energy in Turkey: Great potential, low but increasing utilization, and an empirical analysis on renewable energy-growth nexus. Energy policy 2018, 123, 240-250.
  • [19] Çapik, M., Yılmaz, A. O., & Çavuşoğlu, İ. Present situation and potential role of renewable energy in Turkey. Renewable Energy 2012, 46, 1-13.
  • [20] da Silva Pereira, E. J., Pinho, J. T., Galhardo, M. A. B., & Macêdo, W. N. Methodology of risk analysis by the Monte Carlo Method applied to power generation with renewable energy. Renewable Energy 2014, 69, 347-355.
  • [21] D'Adamo, I., Dell'Aguzzo, A., & Pruckner, M. Residential photovoltaic and energy storage systems for sustainable development: An economic analysis applied to incentive mechanisms. Sustainable Development 2024, 32(1), 84-100.
  • [22] de Jong, P., Kiperstok, A., & Torres, E. A. Economic and environmental analysis of electricity generation technologies in Brazil. Renewable and Sustainable Energy Reviews 2015, 52, 725-739.
  • [23] Dumančić, A., Vlahinić Lenz, N., & Majstrović, G. Can hydrogen production be economically viable on the existing gas-fired power plant location? New empirical evidence. Energies 2023, 16(9), 3737.
  • [24] Dumančić, A., Vlahinić Lenz, N., & Wagmann, L. Profitability Model of Green Hydrogen Production on an Existing Wind Power Plant Location. Sustainability 2024 , 16(4), 1424.
  • [25] Erdmann, G. Economics of electricity. In EPJ Web of Conferences (Vol. 98, p. 06001). EDP Sciences 2015.
  • [26] Etukudoh, E. A., Fabuyide, A., Ibekwe, K. I., Sonko, S., & Ilojianya, V. I. Electrical engineering in renewable energy systems: a review of design and integration challenges. Engineering Science & Technology Journal 2024, 5(1), 231-244.
  • [27] Fersi, S., Chtourou, N., Jury, C., & Poncelet, F. . Economic analysis of renewable heat and electricity production by sewage sludge digestion—a case study. International Journal of Energy Research 2015, 39(2), 234-243.
  • [28] Ferson, S. What Monte Carlo methods cannot do. Human and Ecological Risk Assessment: An International Journal 1996, 2(4), 990-1007.
  • [29] Flouri, M., Karakosta, C., Kladouchou, C., & Psarras, J. How does a natural gas supply interruption affect the EU gas security? A Monte Carlo simulation. Renewable and Sustainable Energy Reviews 2015, 44, 785-796.
  • [30] Glasserman, P., Heidelberger, P., & Shahabuddin, P. Efficient Monte Carlo methods for value-at-risk. 2020
  • [31] Grim, R. G., Huang, Z., Guarnieri, M. T., Ferrell, J. R., Tao, L., & Schaidle, J. A.Transforming the carbon economy: challenges and opportunities in the convergence of low-cost electricity and reductive CO 2 utilisation. Energy & Environmental Science 2020, 13(2), 472-494.
  • [32] Guchhait, R., & Sarkar, B. Increasing growth of renewable energy: A state of the art. Energies 2023, 16(6), 2665.
  • [33] Guliyev, F. Renewable energy targets and policies in traditional oil-producing countries: A comparison of Azerbaijan and Kazakhstan. Journal of Eurasian Studies 2024, 15(1), 110-124.
  • [34] Guluzade, Z., Montini, A., & Castanho, R. A. Can Eco-Innovation Ensure Sustainable Development? Unlocking Renewable Energy in Turkey. In The Challenges of Energy Harvesting. IntechOpen 2025.
  • [35] Gürbüz, A. The role of hydropower in sustainable development. History 2006, 20, 25-000.
  • [36] Hamududu, B., & Killingtveit, A. Assessing climate change impacts on global hydropower. In Climate change and the future of sustainability (pp. 109-132). Apple Academic Press 2017.
  • [37] Hong, L. J., Hu, Z., & Liu, G. Monte Carlo methods for value-at-risk and conditional value-at-risk: a review. ACM Transactions on Modelling and Computer Simulation (TOMACS) 2014, 24(4), 1-37.
  • [38] Huang, G., Liao, H., & Li, M. New formulation of Cholesky decomposition and applications in stochastic simulation. Probabilistic Engineering Mechanics 2013, 34, 40-47.
  • [39] Jan, S. T., Alanazi, A., Feroz, M., & Alanazi, M. Techno-economic analysis of renewable energy sources’ potential in the rural northern region of Kalam in Pakistan. Environment, Development and Sustainability 2024, 1-44.
  • [40] Joy, D. C. An introduction to Monte Carlo simulations. Scanning microscopy 2019, 5(2), 4.
  • [41] Kabeyi, M. J. B., & Olanrewaju, O. A. Sustainable energy transition for renewable and low-carbon grid electricity generation and supply. Frontiers in Energy Research 2022, 9, 743114.
  • [42] Kaya, D. Renewable energy policies in Turkey. Renewable and Sustainable Energy Reviews 2006, 10(2), 152-163.
  • [43] Kaygusuz, K. Hydropower is a clean and renewable energy source for electricity generation. Journal of Engineering Research and Applied Science 2016, 5(1), 359-369.
  • [44] Kılıç, U., & Kekezoğlu, B. A review of solar photovoltaic incentives and Policy: Selected countries and Turkey. Ain Shams Engineering Journal 2022, 13(5), 101669.
  • [45] Koç, N., Koç, Ö. E., Virlanuta, F. O., Bıtrak, O. O., Çiçek, U., Kovacs, R. O., ... & Vrabie, T. Agricultural Value Added, Renewable Energy, and the Environmental Kuznets Curve: Evidence from Turkey. Energies 2025, 18(13), 3291.
  • [46] Krishnamoorthy, A., & Menon, D. Matrix inversion using Cholesky decomposition. In 2013, Signal Processing: Algorithms, architectures, arrangements, and applications (SPA) 2013. (pp. 70-72). IEEE.
  • [47] Kubiak-Wójcicka, K., & Szczęch, L. Dynamics of electricity production against the backdrop of climate change: A case study of hydropower plants in Poland. Energies 2021, 14(12), 3427.
  • [48] Lan, T. T. N. Market development strategy of the renewable energy industry in Vietnam. International journal of business and globalisation 2023, 1, 1-9.
  • [49] Li, H., & Zhang, J. Towards Sustainable Integration: Techno-Economic Analysis and Future Perspectives of Co-located Wind and Hydrogen Energy Systems. Journal of Mechanical Design 2024, 146(2).
  • [50] Li, R., Zhang, J., & Zhao, X. The potential impact of large-scale wind clusters on the local weather patterns. arXiv 2024 preprint arXiv:2412.06638.
  • [51] Mamatkulov, B., Khamdamov, S. J., Togayniyazov, S., Tukhtabaev, J., Quldoshev, Q., & Qarshiev, D. Predicting future living standards in Uzbekistan: Utilizing econometric analysis. In Proceedings of the 7th International Conference on Future Networks and Distributed Systems 2023 (pp. 425-431).
  • [52] McLeish, D. L. Monte Carlo simulation and finance (Vol. 276). John Wiley & Sons, 2011.
  • [53] Miśkiewicz, R. Efficiency of electricity production technology from post-process gas heat: Ecological, economic and social benefits. Energies 2020, 13(22), 6106.
  • [54] Miśkiewicz, R. Efficiency of electricity production technology from post-process gas heat: Ecological, economic and social benefits. Energies 2020, 13(22), 6106.
  • [55] Mite-León, M., & Barzola-Monteses, J. Statistical model for the forecast of hydropower production in Ecuador. International Journal of Renewable Energy Research 2018, 8(2), 1130-1137.
  • [56] Moran, E. F., Lopez, M. C., Moore, N., Müller, N., & Hyndman, D. W. Sustainable hydropower in the 21st century. Proceedings of the National Academy of Sciences 2018, 115(47), 11891-11898.
  • [57] Mundform, D. J., Schaffer, J., Kim, M. J., Shaw, D., Thongteeraparp, A., & Supawan, P. Number of replications required in Monte Carlo simulation studies: a synthesis of four studies. Journal of Modern Applied Statistical Methods 2011, 10(1), 4.
  • [58] Nakićenović, N. Freeing energy from carbon. Daedalus 1996, 125(3), 95-112.
  • [59] Nienow, S., McNamara, K. T., Gillespie, A. R., & Preckel, P. V. . A model for the economic evaluation of plantation biomass production for co-firing with coal in electricity production. Agricultural and Resource Economics Review 1999, 28(1), 106-117.
  • [60] Ogundari, I., Olaleye, S., Ilesanmı, O., & Bakare, O. Techno-Economic Assessment of Liquefied Petroleum Gas-Powered Alternative Electricity Critical Infrastructure Development in Nigeria’s South-West Geopolitical Zone. Journal of Digital Food, Energy & Water Systems 2024, 5(1).
  • [61] Orhangazi, Ö., & Yeldan, A. E. The re‐making of the Turkish crisis. Development and change 2021, 52(3), 460-503.
  • [62] Osman, A. I., Fawzy, S., Farghali, M., El-Azazy, M., Elgarahy, A. M., Fahim, R. A., ... & Rooney, D. W. Biochar for agronomy, animal farming, anaerobic digestion, composting, water treatment, soil remediation, construction, energy storage, and carbon sequestration: a review. Environmental Chemistry Letters 2022, 20(4), 2385-2485.
  • [63] Paxton, P., Curran, P. J., Bollen, K. A., Kirby, J., & Chen, F. Monte Carlo experiments: Design and implementation. Structural Equation Modelling 2001, 8(2), 287-312.
  • [64] Pighinelli, A. L., Schaffer, M. A., & Boateng, A. A. . Utilization of eucalyptus for electricity production in Brazil via fast pyrolysis: A techno-economic analysis. Renewable Energy 2018, 119, 590-597.
  • [65] Qin, L., Raheem, S., Murshed, M., Miao, X., Khan, Z., & Kirikkaleli, D. Does financial inclusion limit carbon dioxide emissions? Analyzing the role of globalisation and renewable electricity output. Sustainable Development 2021, 29(6), 1138-1154.
  • [66] Ravazzani, G., Dalla Valle, F., Gaudard, L., Mendlik, T., Gobiet, A., & Mancini, M. Assessing climate impacts on hydropower production: The case of the Toce River Basin. Climate 2016, 4(2), 16.
  • [67] Ravazzani, G., Dalla Valle, F., Gaudard, L., Mendlik, T., Gobiet, A., & Mancini, M. Assessing climate impacts on hydropower production: The case of the Toce River Basin. Climate 2016, 4(2), 16.
  • [68] Razmjoo, A., Ehyaei, M. A., Ahmadi, A., Pazhoohesh, M., Marzband, M., Mansouri Khosravi, M., ... & Davarpanah, A. Implementation of energy sustainability using hybrid power systems: a case study. Energy Sources, Part A: Recovery, Utilisation, and Environmental Effects 2024, 46(1), 2525-2538.
  • [69] Ren, X., Gao, H., Zhang, X., Gu, J., & Hong, L. Multivariate low-carbon scheduling of distribution network based on improved dynamic carbon emission factor. Frontiers in Energy Research 2024, 12, 1380260.
  • [70] Ren, Z., Chen, Y., Song, C., Liu, M., Xu, A., & Zhang, Q. Economic analysis of rooftop photovoltaic systems under different shadowing conditions for 20 cities in China. In Building Simulation 2024 (Vol. 17, No. 2, pp. 235-252). Beijing: Tsinghua University Press.
  • [71] Risto, T., & Aija, K. Comparison of electricity generation costs. Research Paper EN A-56 2008, EN A, 56, 25.
  • [72] Rusilowati, U., Ngemba, H. R., Anugrah, R. W., Fitriani, A., & Astuti, E. D. Leveraging AI for superior efficiency in energy use and development of renewable resources such as solar energy, wind, and bioenergy. International Transactions on Artificial Intelligence 2024, 2(2), 114-120.
  • [73] Rüstemoğlu, H. Dynamics of total and industrial energy use in Turkiye from 1991 to 2019: a case study. Environment, Development and Sustainability 2024, 1-29.
  • [74] Sala, D., Bashynska, I., Pavlova, O., Pavlov, K., Chorna, N., & Chornyi, R. Investment and innovation activity of renewable energy sources in the electric power industry in the south-eastern region of Ukraine. Energies 2023, 16(5), 2363.
  • [75] Santos, M. P., & Hanak, D. P. Sorption-enhanced gasification of municipal solid waste for hydrogen production: a comparative techno-economic analysis using limestone, dolomite and doped limestone. Biomass Conversion and Biorefinery 2024, 14(6), 7857-7872.
  • [76] Sato, M., & Dechezleprêtre, A. Asymmetric industrial energy prices and international trade. Energy Economics 2025, 52, S130-S141.
  • [77] Sato, M., Singer, G., Dussaux, D., & Lovo, S. International and sectoral variation in industrial energy prices 1995–2015. Energy Economics 2019, 78, 235-258.
  • [78] Scarlat, N., Prussi, M., & Padella, M. Quantification of the carbon intensity of electricity produced and used in Europe. Applied Energy 2022, 305, 117901.
  • [79] Shaikh, A. R., Wang, Q., Han, L., Feng, Y., Sharif, Z., Li, Z., ... & Kumar, S. Techno-economic analysis of hydrogen and electricity production by biomass calcium looping gasification. Sustainability 2022, 14(4), 2189.
  • [80] Shaikh, M. A., Kucukvar, M., Onat, N. C., & Kirkil, G. (2017). A framework for water and carbon footprint analysis of national electricity production scenarios. Energy 2017, 139, 406-421.
  • [81] Şanlı, D., İ. Tax Incentives for Renewable Energy in Turkey and the EU-27. Karamanoglu Mehmetbey University Journal of Social & Economic Research/Karamanoğlu Mehmetbey Üniversitesi Sosyal ve Ekonomi̇k Araştırmalar Dergi̇si 2025, 27(48).
  • [82] Tarjanne, R., & Kivistö, A. Comparison of electricity generation costs. Research report/Faculty of Technology. Department of Energy and Environmental Technology 2008.
  • [83] Telli, A., Erat, S., & Demir, B. Comparison of energy transition of Turkey and Germany: energy policy, strengths/weaknesses and targets. Clean Technologies and Environmental Policy 2021, 23(2), 413-427.
  • [84] Tian, Y., & Yang, X. Asymmetric effects of industrial energy prices on carbon productivity. Environmental Science and Pollution Research 2020, 27(33), 42133-42149.
  • [85] Tizgui, I., El Guezar, F., Bouzahir, H., & Vargas, A. N. Estimation and analysis of wind electricity production cost in Morocco. International Journal of Energy Economics and Policy 2018, 8(3), 58-66.
  • [86] Unnewehr, J. F., Weidlich, A., Gfüllner, L., & Schäfer, M. Open-data-based carbon emission intensity signals for electricity generation in European countries–top-down vs. bottom-up approach. Cleaner Energy Systems 2022, 3, 100018.
  • [87] van Kooten, G. C. Economic analysis of feed-in tariffs for generating electricity from renewable energy sources. In Handbook on Energy and Climate Change 2013 (pp. 224-253). Edward Elgar Publishing.
  • [88] Velikova, T., Mileva, N., & Naseva, E. Method “Monte Carlo” in healthcare. World Journal of Methodology 2024, 14(3), 93930.
  • [89] Villanthenkodath, M. A., & Mohammed, S. P. Examining the impact of electricity production on economic growth and environmental quality in Japan: a disaggregated level analysis. Environmental Science and Pollution Research 2023, 30(1), 849-868.
  • [90] Vořechovský, M., & Novák, D. Correlation control in small-sample Monte Carlo type simulations I: A simulated annealing approach. Probabilistic Engineering Mechanics 2009, 24(3), 452-462.
  • [91] Yu, Z., Liu, W., Chen, L., Eti, S., Dinçer, H., & Yüksel, S. The effects of electricity production on industrial development and sustainable economic growth: A VAR analysis for BRICS countries. Sustainability 2019, 11(21), 5895.
  • [92] Zafoschnig, L. A., Nold, S., & Goldschmidt, J. C. The race for lowest costs of electricity production: techno-economic analysis of silicon, perovskite and tandem solar cells. IEEE Journal of Photovoltaics 2020, 10(6), 1632-1641.
  • [93] Zainul, R., Basem, A., Alfaker, M. J., Sharma, P., Kumar, A., Al-Bahrani, M., ... & Pandey, S. (2024). Exergy, exergoeconomic optimization and exergoenvironmental analysis of a hybrid solar, wind, and marine energy power system: A strategy for carbon-free electrical production. Heliyon 2024, 10(16).
  • [94] Zhang, H., Dai, H., Beer, M., & Wang, W. Structural reliability analysis on the basis of small samples: An interval quasi-Monte Carlo method. Mechanical Systems and Signal Processing 2013, 37(1-2), 137-151.
  • [95] Zhuo, Z., Du, E., Zhang, N., Nielsen, C. P., Lu, X., Xiao, J., ... & Kang, C. Cost increase in the electricity supply to achieve carbon neutrality in China. Nature Communications 2022, 13(1), 3172.

An analysis of Turkish electricity production for the future in light of 2012 and 2020 data

Year 2025, Volume: 10 Issue: 4, 1485 - 1510, 29.12.2025
https://doi.org/10.58559/ijes.1759569

Abstract

Electricity production is one of the significant problems in the global context, particularly in light of recent developments regarding the growth of renewable energy resources in both developed and developing countries. This paper mainly focuses on this issue in the Turkish sample. The percentage of carbon-based production, hydroelectric production and renewable resources is calculated, their relationship is argumented, and the price of industrial electric consumption is correlated with these variables in this paper. The research aims to realize a Monte Carlo Simulation with a Cholesky Decomposition (300 iterations and relatively small sample, n=9 years) to frame these relationships. Throughout the research, the current situation of electricity production will be examined, and future orientations and possibilities of development will be discussed. Thus, a research gap will be filled. According to the key findings, there are no important changes in energy production at this pace of the energy production methods and energy prices. On the other hand, the ratio of carbon-based electricity production is still high, and to increase the percentage of renewable energy production, the necessary amendments should be designed regarding capacity improvements, innovation and technology.

References

  • [1] Adeyemi, O. I., & Hunt, L. C. Modelling OECD industrial energy demand: Asymmetric price responses and energy-saving technical change. Energy Economics 2007, 29(4), 693-709.
  • [2] Ağbulut, Ü., Ceylan, İ., Gürel, A. E., & Ergün, A. The history of greenhouse gas emissions and their relationship with Turkey's nuclear energy policy. International Journal of Ambient Energy 2021, 42(12), 1447-1455.
  • [3] Akber, M. Z., Thaheem, M. J., & Arshad, H. . Life cycle sustainability assessment of electricity generation in Pakistan: Policy regime for a sustainable energy mix. Energy Policy 2017, 111, 111-126.
  • [4] Akcay, Ü., & Güngen, A. R. The making of Turkey's 2018-2019 economic crisis (No. 120/2019). Working Paper 2019.
  • [5] Alharbi, S. S., Al Mamun, M., Boubaker, S., & Rizvi, S. K. A. . Green finance and renewable energy: A worldwide evidence. Energy Economics 2023, 118, 106499.
  • [6] Al-Kharusi, S., & Murthy, S. R. Financial stability of GCC banks in the COVID-19 Crisis: A simulation approach. The Journal of Asian Finance, Economics and Business 2020, 7(12), 337-344.
  • [7] Al-Kharusi, S., & Murthy, S. R. . Financial stability of GCC banks in the COVID-19 Crisis: A simulation approach. The Journal of Asian Finance, Economics and Business 2020, 7(12), 337-344.
  • [8] Ambec, S., & Doucet, J. A. Decentralising hydropower production. Canadian Journal of Economics/Revue canadienne d'économique 2003, 36(3), 587-607.
  • [9] Ang, B. W., Zhou, P., & Tay, L. P. Potential for reducing global carbon emissions from electricity production—A benchmarking analysis. Energy Policy 2011, 39(5), 2482-2489.
  • [10] Aziz, Y., Janjua, A. K., Hassan, M., Anwar, M., Kanwal, S., & Yousif, M. Techno-economic analysis of PV systems installed using innovative strategies for smart, sustainable agriculture farms. Environment, Development and Sustainability 2024, 26(2), 5003-5024.
  • [11] Azzopardi, B., Emmott, C. J., Urbina, A., Krebs, F. C., Mutale, J., & Nelson, J. . Economic assessment of solar electricity production from organic-based photovoltaic modules in a domestic environment. Energy & Environmental Science 2011, 4(10), 3741-3753.
  • [12] Bain, D. M., & Acker, T. L. Hydropower impacts on electrical system production costs in the southwest United States. Energies 2018, 11(2), 368.
  • [13] Baležentis, T., & Streimikiene, D. Multi-criteria ranking of energy generation scenarios with Monte Carlo simulation. Applied Energy 2017, 185, 862-871.
  • [14] Bonate, P. L. A brief introduction to Monte Carlo simulation. Clinical pharmacokinetics 2001, 40, 15-22.
  • [15] Boussaa, Y., Dodoo, A., Nguyen, T., & Rupar-Gadd, K. Comprehensive renovation of a multi-apartment building in Sweden: techno-economic analysis with respect to different economic scenarios. Building Research & Information 2024, 52(4), 463-478.
  • [16] Brunekreeft, G. (2003) Regulation and competition policy in the electricity market: economic analysis and German experience. Baden-Baden: Nomos.
  • [17] Budzianowski, W. M. Critical evaluation of low-carbon electricity production technologies. Rynek Energii 2011, 95(4), 127-133.
  • [18] Bulut, U., & Muratoglu, G. Renewable energy in Turkey: Great potential, low but increasing utilization, and an empirical analysis on renewable energy-growth nexus. Energy policy 2018, 123, 240-250.
  • [19] Çapik, M., Yılmaz, A. O., & Çavuşoğlu, İ. Present situation and potential role of renewable energy in Turkey. Renewable Energy 2012, 46, 1-13.
  • [20] da Silva Pereira, E. J., Pinho, J. T., Galhardo, M. A. B., & Macêdo, W. N. Methodology of risk analysis by the Monte Carlo Method applied to power generation with renewable energy. Renewable Energy 2014, 69, 347-355.
  • [21] D'Adamo, I., Dell'Aguzzo, A., & Pruckner, M. Residential photovoltaic and energy storage systems for sustainable development: An economic analysis applied to incentive mechanisms. Sustainable Development 2024, 32(1), 84-100.
  • [22] de Jong, P., Kiperstok, A., & Torres, E. A. Economic and environmental analysis of electricity generation technologies in Brazil. Renewable and Sustainable Energy Reviews 2015, 52, 725-739.
  • [23] Dumančić, A., Vlahinić Lenz, N., & Majstrović, G. Can hydrogen production be economically viable on the existing gas-fired power plant location? New empirical evidence. Energies 2023, 16(9), 3737.
  • [24] Dumančić, A., Vlahinić Lenz, N., & Wagmann, L. Profitability Model of Green Hydrogen Production on an Existing Wind Power Plant Location. Sustainability 2024 , 16(4), 1424.
  • [25] Erdmann, G. Economics of electricity. In EPJ Web of Conferences (Vol. 98, p. 06001). EDP Sciences 2015.
  • [26] Etukudoh, E. A., Fabuyide, A., Ibekwe, K. I., Sonko, S., & Ilojianya, V. I. Electrical engineering in renewable energy systems: a review of design and integration challenges. Engineering Science & Technology Journal 2024, 5(1), 231-244.
  • [27] Fersi, S., Chtourou, N., Jury, C., & Poncelet, F. . Economic analysis of renewable heat and electricity production by sewage sludge digestion—a case study. International Journal of Energy Research 2015, 39(2), 234-243.
  • [28] Ferson, S. What Monte Carlo methods cannot do. Human and Ecological Risk Assessment: An International Journal 1996, 2(4), 990-1007.
  • [29] Flouri, M., Karakosta, C., Kladouchou, C., & Psarras, J. How does a natural gas supply interruption affect the EU gas security? A Monte Carlo simulation. Renewable and Sustainable Energy Reviews 2015, 44, 785-796.
  • [30] Glasserman, P., Heidelberger, P., & Shahabuddin, P. Efficient Monte Carlo methods for value-at-risk. 2020
  • [31] Grim, R. G., Huang, Z., Guarnieri, M. T., Ferrell, J. R., Tao, L., & Schaidle, J. A.Transforming the carbon economy: challenges and opportunities in the convergence of low-cost electricity and reductive CO 2 utilisation. Energy & Environmental Science 2020, 13(2), 472-494.
  • [32] Guchhait, R., & Sarkar, B. Increasing growth of renewable energy: A state of the art. Energies 2023, 16(6), 2665.
  • [33] Guliyev, F. Renewable energy targets and policies in traditional oil-producing countries: A comparison of Azerbaijan and Kazakhstan. Journal of Eurasian Studies 2024, 15(1), 110-124.
  • [34] Guluzade, Z., Montini, A., & Castanho, R. A. Can Eco-Innovation Ensure Sustainable Development? Unlocking Renewable Energy in Turkey. In The Challenges of Energy Harvesting. IntechOpen 2025.
  • [35] Gürbüz, A. The role of hydropower in sustainable development. History 2006, 20, 25-000.
  • [36] Hamududu, B., & Killingtveit, A. Assessing climate change impacts on global hydropower. In Climate change and the future of sustainability (pp. 109-132). Apple Academic Press 2017.
  • [37] Hong, L. J., Hu, Z., & Liu, G. Monte Carlo methods for value-at-risk and conditional value-at-risk: a review. ACM Transactions on Modelling and Computer Simulation (TOMACS) 2014, 24(4), 1-37.
  • [38] Huang, G., Liao, H., & Li, M. New formulation of Cholesky decomposition and applications in stochastic simulation. Probabilistic Engineering Mechanics 2013, 34, 40-47.
  • [39] Jan, S. T., Alanazi, A., Feroz, M., & Alanazi, M. Techno-economic analysis of renewable energy sources’ potential in the rural northern region of Kalam in Pakistan. Environment, Development and Sustainability 2024, 1-44.
  • [40] Joy, D. C. An introduction to Monte Carlo simulations. Scanning microscopy 2019, 5(2), 4.
  • [41] Kabeyi, M. J. B., & Olanrewaju, O. A. Sustainable energy transition for renewable and low-carbon grid electricity generation and supply. Frontiers in Energy Research 2022, 9, 743114.
  • [42] Kaya, D. Renewable energy policies in Turkey. Renewable and Sustainable Energy Reviews 2006, 10(2), 152-163.
  • [43] Kaygusuz, K. Hydropower is a clean and renewable energy source for electricity generation. Journal of Engineering Research and Applied Science 2016, 5(1), 359-369.
  • [44] Kılıç, U., & Kekezoğlu, B. A review of solar photovoltaic incentives and Policy: Selected countries and Turkey. Ain Shams Engineering Journal 2022, 13(5), 101669.
  • [45] Koç, N., Koç, Ö. E., Virlanuta, F. O., Bıtrak, O. O., Çiçek, U., Kovacs, R. O., ... & Vrabie, T. Agricultural Value Added, Renewable Energy, and the Environmental Kuznets Curve: Evidence from Turkey. Energies 2025, 18(13), 3291.
  • [46] Krishnamoorthy, A., & Menon, D. Matrix inversion using Cholesky decomposition. In 2013, Signal Processing: Algorithms, architectures, arrangements, and applications (SPA) 2013. (pp. 70-72). IEEE.
  • [47] Kubiak-Wójcicka, K., & Szczęch, L. Dynamics of electricity production against the backdrop of climate change: A case study of hydropower plants in Poland. Energies 2021, 14(12), 3427.
  • [48] Lan, T. T. N. Market development strategy of the renewable energy industry in Vietnam. International journal of business and globalisation 2023, 1, 1-9.
  • [49] Li, H., & Zhang, J. Towards Sustainable Integration: Techno-Economic Analysis and Future Perspectives of Co-located Wind and Hydrogen Energy Systems. Journal of Mechanical Design 2024, 146(2).
  • [50] Li, R., Zhang, J., & Zhao, X. The potential impact of large-scale wind clusters on the local weather patterns. arXiv 2024 preprint arXiv:2412.06638.
  • [51] Mamatkulov, B., Khamdamov, S. J., Togayniyazov, S., Tukhtabaev, J., Quldoshev, Q., & Qarshiev, D. Predicting future living standards in Uzbekistan: Utilizing econometric analysis. In Proceedings of the 7th International Conference on Future Networks and Distributed Systems 2023 (pp. 425-431).
  • [52] McLeish, D. L. Monte Carlo simulation and finance (Vol. 276). John Wiley & Sons, 2011.
  • [53] Miśkiewicz, R. Efficiency of electricity production technology from post-process gas heat: Ecological, economic and social benefits. Energies 2020, 13(22), 6106.
  • [54] Miśkiewicz, R. Efficiency of electricity production technology from post-process gas heat: Ecological, economic and social benefits. Energies 2020, 13(22), 6106.
  • [55] Mite-León, M., & Barzola-Monteses, J. Statistical model for the forecast of hydropower production in Ecuador. International Journal of Renewable Energy Research 2018, 8(2), 1130-1137.
  • [56] Moran, E. F., Lopez, M. C., Moore, N., Müller, N., & Hyndman, D. W. Sustainable hydropower in the 21st century. Proceedings of the National Academy of Sciences 2018, 115(47), 11891-11898.
  • [57] Mundform, D. J., Schaffer, J., Kim, M. J., Shaw, D., Thongteeraparp, A., & Supawan, P. Number of replications required in Monte Carlo simulation studies: a synthesis of four studies. Journal of Modern Applied Statistical Methods 2011, 10(1), 4.
  • [58] Nakićenović, N. Freeing energy from carbon. Daedalus 1996, 125(3), 95-112.
  • [59] Nienow, S., McNamara, K. T., Gillespie, A. R., & Preckel, P. V. . A model for the economic evaluation of plantation biomass production for co-firing with coal in electricity production. Agricultural and Resource Economics Review 1999, 28(1), 106-117.
  • [60] Ogundari, I., Olaleye, S., Ilesanmı, O., & Bakare, O. Techno-Economic Assessment of Liquefied Petroleum Gas-Powered Alternative Electricity Critical Infrastructure Development in Nigeria’s South-West Geopolitical Zone. Journal of Digital Food, Energy & Water Systems 2024, 5(1).
  • [61] Orhangazi, Ö., & Yeldan, A. E. The re‐making of the Turkish crisis. Development and change 2021, 52(3), 460-503.
  • [62] Osman, A. I., Fawzy, S., Farghali, M., El-Azazy, M., Elgarahy, A. M., Fahim, R. A., ... & Rooney, D. W. Biochar for agronomy, animal farming, anaerobic digestion, composting, water treatment, soil remediation, construction, energy storage, and carbon sequestration: a review. Environmental Chemistry Letters 2022, 20(4), 2385-2485.
  • [63] Paxton, P., Curran, P. J., Bollen, K. A., Kirby, J., & Chen, F. Monte Carlo experiments: Design and implementation. Structural Equation Modelling 2001, 8(2), 287-312.
  • [64] Pighinelli, A. L., Schaffer, M. A., & Boateng, A. A. . Utilization of eucalyptus for electricity production in Brazil via fast pyrolysis: A techno-economic analysis. Renewable Energy 2018, 119, 590-597.
  • [65] Qin, L., Raheem, S., Murshed, M., Miao, X., Khan, Z., & Kirikkaleli, D. Does financial inclusion limit carbon dioxide emissions? Analyzing the role of globalisation and renewable electricity output. Sustainable Development 2021, 29(6), 1138-1154.
  • [66] Ravazzani, G., Dalla Valle, F., Gaudard, L., Mendlik, T., Gobiet, A., & Mancini, M. Assessing climate impacts on hydropower production: The case of the Toce River Basin. Climate 2016, 4(2), 16.
  • [67] Ravazzani, G., Dalla Valle, F., Gaudard, L., Mendlik, T., Gobiet, A., & Mancini, M. Assessing climate impacts on hydropower production: The case of the Toce River Basin. Climate 2016, 4(2), 16.
  • [68] Razmjoo, A., Ehyaei, M. A., Ahmadi, A., Pazhoohesh, M., Marzband, M., Mansouri Khosravi, M., ... & Davarpanah, A. Implementation of energy sustainability using hybrid power systems: a case study. Energy Sources, Part A: Recovery, Utilisation, and Environmental Effects 2024, 46(1), 2525-2538.
  • [69] Ren, X., Gao, H., Zhang, X., Gu, J., & Hong, L. Multivariate low-carbon scheduling of distribution network based on improved dynamic carbon emission factor. Frontiers in Energy Research 2024, 12, 1380260.
  • [70] Ren, Z., Chen, Y., Song, C., Liu, M., Xu, A., & Zhang, Q. Economic analysis of rooftop photovoltaic systems under different shadowing conditions for 20 cities in China. In Building Simulation 2024 (Vol. 17, No. 2, pp. 235-252). Beijing: Tsinghua University Press.
  • [71] Risto, T., & Aija, K. Comparison of electricity generation costs. Research Paper EN A-56 2008, EN A, 56, 25.
  • [72] Rusilowati, U., Ngemba, H. R., Anugrah, R. W., Fitriani, A., & Astuti, E. D. Leveraging AI for superior efficiency in energy use and development of renewable resources such as solar energy, wind, and bioenergy. International Transactions on Artificial Intelligence 2024, 2(2), 114-120.
  • [73] Rüstemoğlu, H. Dynamics of total and industrial energy use in Turkiye from 1991 to 2019: a case study. Environment, Development and Sustainability 2024, 1-29.
  • [74] Sala, D., Bashynska, I., Pavlova, O., Pavlov, K., Chorna, N., & Chornyi, R. Investment and innovation activity of renewable energy sources in the electric power industry in the south-eastern region of Ukraine. Energies 2023, 16(5), 2363.
  • [75] Santos, M. P., & Hanak, D. P. Sorption-enhanced gasification of municipal solid waste for hydrogen production: a comparative techno-economic analysis using limestone, dolomite and doped limestone. Biomass Conversion and Biorefinery 2024, 14(6), 7857-7872.
  • [76] Sato, M., & Dechezleprêtre, A. Asymmetric industrial energy prices and international trade. Energy Economics 2025, 52, S130-S141.
  • [77] Sato, M., Singer, G., Dussaux, D., & Lovo, S. International and sectoral variation in industrial energy prices 1995–2015. Energy Economics 2019, 78, 235-258.
  • [78] Scarlat, N., Prussi, M., & Padella, M. Quantification of the carbon intensity of electricity produced and used in Europe. Applied Energy 2022, 305, 117901.
  • [79] Shaikh, A. R., Wang, Q., Han, L., Feng, Y., Sharif, Z., Li, Z., ... & Kumar, S. Techno-economic analysis of hydrogen and electricity production by biomass calcium looping gasification. Sustainability 2022, 14(4), 2189.
  • [80] Shaikh, M. A., Kucukvar, M., Onat, N. C., & Kirkil, G. (2017). A framework for water and carbon footprint analysis of national electricity production scenarios. Energy 2017, 139, 406-421.
  • [81] Şanlı, D., İ. Tax Incentives for Renewable Energy in Turkey and the EU-27. Karamanoglu Mehmetbey University Journal of Social & Economic Research/Karamanoğlu Mehmetbey Üniversitesi Sosyal ve Ekonomi̇k Araştırmalar Dergi̇si 2025, 27(48).
  • [82] Tarjanne, R., & Kivistö, A. Comparison of electricity generation costs. Research report/Faculty of Technology. Department of Energy and Environmental Technology 2008.
  • [83] Telli, A., Erat, S., & Demir, B. Comparison of energy transition of Turkey and Germany: energy policy, strengths/weaknesses and targets. Clean Technologies and Environmental Policy 2021, 23(2), 413-427.
  • [84] Tian, Y., & Yang, X. Asymmetric effects of industrial energy prices on carbon productivity. Environmental Science and Pollution Research 2020, 27(33), 42133-42149.
  • [85] Tizgui, I., El Guezar, F., Bouzahir, H., & Vargas, A. N. Estimation and analysis of wind electricity production cost in Morocco. International Journal of Energy Economics and Policy 2018, 8(3), 58-66.
  • [86] Unnewehr, J. F., Weidlich, A., Gfüllner, L., & Schäfer, M. Open-data-based carbon emission intensity signals for electricity generation in European countries–top-down vs. bottom-up approach. Cleaner Energy Systems 2022, 3, 100018.
  • [87] van Kooten, G. C. Economic analysis of feed-in tariffs for generating electricity from renewable energy sources. In Handbook on Energy and Climate Change 2013 (pp. 224-253). Edward Elgar Publishing.
  • [88] Velikova, T., Mileva, N., & Naseva, E. Method “Monte Carlo” in healthcare. World Journal of Methodology 2024, 14(3), 93930.
  • [89] Villanthenkodath, M. A., & Mohammed, S. P. Examining the impact of electricity production on economic growth and environmental quality in Japan: a disaggregated level analysis. Environmental Science and Pollution Research 2023, 30(1), 849-868.
  • [90] Vořechovský, M., & Novák, D. Correlation control in small-sample Monte Carlo type simulations I: A simulated annealing approach. Probabilistic Engineering Mechanics 2009, 24(3), 452-462.
  • [91] Yu, Z., Liu, W., Chen, L., Eti, S., Dinçer, H., & Yüksel, S. The effects of electricity production on industrial development and sustainable economic growth: A VAR analysis for BRICS countries. Sustainability 2019, 11(21), 5895.
  • [92] Zafoschnig, L. A., Nold, S., & Goldschmidt, J. C. The race for lowest costs of electricity production: techno-economic analysis of silicon, perovskite and tandem solar cells. IEEE Journal of Photovoltaics 2020, 10(6), 1632-1641.
  • [93] Zainul, R., Basem, A., Alfaker, M. J., Sharma, P., Kumar, A., Al-Bahrani, M., ... & Pandey, S. (2024). Exergy, exergoeconomic optimization and exergoenvironmental analysis of a hybrid solar, wind, and marine energy power system: A strategy for carbon-free electrical production. Heliyon 2024, 10(16).
  • [94] Zhang, H., Dai, H., Beer, M., & Wang, W. Structural reliability analysis on the basis of small samples: An interval quasi-Monte Carlo method. Mechanical Systems and Signal Processing 2013, 37(1-2), 137-151.
  • [95] Zhuo, Z., Du, E., Zhang, N., Nielsen, C. P., Lu, X., Xiao, J., ... & Kang, C. Cost increase in the electricity supply to achieve carbon neutrality in China. Nature Communications 2022, 13(1), 3172.
There are 95 citations in total.

Details

Primary Language English
Subjects Political Science (Other)
Journal Section Research Article
Authors

Olcay Ölçen 0000-0002-4835-1171

Submission Date August 6, 2025
Acceptance Date December 3, 2025
Publication Date December 29, 2025
Published in Issue Year 2025 Volume: 10 Issue: 4

Cite

APA Ölçen, O. (2025). An analysis of Turkish electricity production for the future in light of 2012 and 2020 data. International Journal of Energy Studies, 10(4), 1485-1510. https://doi.org/10.58559/ijes.1759569
AMA Ölçen O. An analysis of Turkish electricity production for the future in light of 2012 and 2020 data. Int J Energy Studies. December 2025;10(4):1485-1510. doi:10.58559/ijes.1759569
Chicago Ölçen, Olcay. “An Analysis of Turkish Electricity Production for the Future in Light of 2012 and 2020 Data”. International Journal of Energy Studies 10, no. 4 (December 2025): 1485-1510. https://doi.org/10.58559/ijes.1759569.
EndNote Ölçen O (December 1, 2025) An analysis of Turkish electricity production for the future in light of 2012 and 2020 data. International Journal of Energy Studies 10 4 1485–1510.
IEEE O. Ölçen, “An analysis of Turkish electricity production for the future in light of 2012 and 2020 data”, Int J Energy Studies, vol. 10, no. 4, pp. 1485–1510, 2025, doi: 10.58559/ijes.1759569.
ISNAD Ölçen, Olcay. “An Analysis of Turkish Electricity Production for the Future in Light of 2012 and 2020 Data”. International Journal of Energy Studies 10/4 (December2025), 1485-1510. https://doi.org/10.58559/ijes.1759569.
JAMA Ölçen O. An analysis of Turkish electricity production for the future in light of 2012 and 2020 data. Int J Energy Studies. 2025;10:1485–1510.
MLA Ölçen, Olcay. “An Analysis of Turkish Electricity Production for the Future in Light of 2012 and 2020 Data”. International Journal of Energy Studies, vol. 10, no. 4, 2025, pp. 1485-10, doi:10.58559/ijes.1759569.
Vancouver Ölçen O. An analysis of Turkish electricity production for the future in light of 2012 and 2020 data. Int J Energy Studies. 2025;10(4):1485-510.