Research Article
BibTex RIS Cite
Year 2020, Volume: 5 Issue: 1, 43 - 55, 24.06.2020

Abstract

References

  • [1] Arghode, V., K., Gupta, A., K., “Effect of flow field for colourless distributed combustion (CDC) for gas turbine combustion”, Applied Energy 2010: 87; 1631–40. [2] Arghode, V., K., Gupta, A., K., “Role of thermal intensity on operational characteristics of ultra-low emission colourless distributed combustion”, Applied Energy 2013:111; 930–56. [3] Khalil, A., E., E., Gupta, A., K., “Swirling distributed combustion for clean energy conversion in gas turbine applications”, Applied Energy 2011: 88; 3685–93. [4] Khalil, A., E., E., Gupta, A., K., “Distributed swirl combustion for gas turbine application”, Applied Energy 2011: 88; 4898–907. [5] Wunning, J., A., Wunning, J., G., “Flameless oxidation to reduce thermal NO formation”, Progress in Energy and Combustion Science 2011: 23; 81–94. [6] Lammerl, O., Schutz, H., Schmitz, G., Luckerath, R., Stohr, M., Noll, B., “FLOX combustion at high power density and high flame temperature”, Journal of Engineering for Gas Turbines and Power 2010: 132(12); 121-503. [7] Weber, R., Smart, J., P., Vd Kamp, W., “On the (MILD) combustion of gaseous, liquid and solid fuels in high temperature preheated air”, Proceedings of the Combustion Institute 2005: 30; 2623–9. [8] Tsuji, H., Gupta, A., K., Hasegawa, T., Katsuki, M., Kishimoto, K., Morita, M. “High temperature air combustion from energy conservation to pollution reduction”, CRC Press LLC, Florida, US, 2003. [9] Khalil, A., E., E., “Gupta AK. Fostering distributed combustion in a swirl burner using prevaporized liquid fuels”, Applied Energy 2018: 211; 513–522. [10] Sabia, P., de Joannon, M., Lavadera, M.,L., Giudicianni, P., Ragucci, R., “Auto ignition delay times of propane mixtures under MILD conditions at atmospheric pressure”, Combustion and Flame 2014: 161, 3022–3030. [11] Sabia, P., de Joannon, M., Picarelli, A., Ragucci, R., “Methane auto-ignition delay times and oxidation regimes in MILD combustion at atmospheric pressure”, Combustion and Flame 2013: 160(1); 47–55. [12] Sabia, P., Lavadera, M.,L., Giudicianni, P., Sorrentino, G., Ragucci, R., de Joannon M., “CO2 and H2O effect on propane auto-ignition delay times under mild combustion operative conditions”, Combustion and Flame 2014: 162(3); 533–543. [13] Sidey, J., A., M., Mastorakos, E., “Simulations of laminar non-premixed flames of methane with hot combustion products as oxidiser”, Combustion and Flame 2016: 163; 1–11. [14] Li, P., Wang., F., Mi., J., Dally., B., B., Mei, Z., Zhang, J., “Parente A. Mechanisms of NO formation in MILD combustion of CH4/H2 fuel blends”, International Journal of Hydrogen Energy 2014: 39; 19187–19203. [15] Costa, M., Melo, M., Sousa, J., Levy, Y., “Experimental investigation of a novel combustor model for gas turbines”, Journal of Propulsion and Power 2009: 25: 609–617. [16] Lammel, O., Schutz, H., Schmitz, G., Luckerath, R., Stohr, M., Noll, B., Aigner, M., Hase, M., Krebs, W., “Flox combustion at high power density and high flame temperatures”, Journal of Engineering for Gas Turbines and Power 2010: 132; 121-503. [17] Sorrentino, G., Sabia, P., de Joannon, M., Cavaliere, A., Ragucci, R., “The Effect of Diluent on the Sustainability of MILD Combustion in a Cyclonic Burner”, Flow Turbulence and Combustion 2016: 96; 449–468.

Combustion Characteristics on Colorless Distributed Combustion (CDC) in a Cyclonic Burner

Year 2020, Volume: 5 Issue: 1, 43 - 55, 24.06.2020

Abstract

Colorless distributed combustion (CDC) is a novel combustion method. Ultra-low NOx and CO pollutant emissions, more uniform thermal field, stable flame formation, equally temperature distribution, etc. can be provided by CDC conditions. CDC can be performed to different type of burners likewise cyclonic burner. Cyclonic burners could provide more residence time on account of intensely internal circulation compared to conventional designated burners. On the other hand CDC is attained by external recirculation. Therefore, non-premixed combustion of methane using a cyclonic burner was modelled through a commercial computational fluid dynamics (CFD) code to enable both external and internal recirculation in the study presented. In the modelings, Reynolds Stress Model that predicts accurately higher level turbulence closures was used as the turbulence model. The assumed-shape with β-function Probability Density Function non-premixed combustion and P-1 radiation models were also used as the combustion and radiation models, respectively. In order to achieve transition to CDC, CO2 as the diluent was selected to decrease oxygen concentration in the oxidizer from 21% to 17%. The transition to CDC was reached at nearly an oxygen concentration of 17% by burning methane at an equivalence ratio of 0.83 with reducing oxygen concentration in the oxidizer by CO2. Ultra-low NOX is achieved for favorable conditions. Besides, CO levels was reduced substantially.

References

  • [1] Arghode, V., K., Gupta, A., K., “Effect of flow field for colourless distributed combustion (CDC) for gas turbine combustion”, Applied Energy 2010: 87; 1631–40. [2] Arghode, V., K., Gupta, A., K., “Role of thermal intensity on operational characteristics of ultra-low emission colourless distributed combustion”, Applied Energy 2013:111; 930–56. [3] Khalil, A., E., E., Gupta, A., K., “Swirling distributed combustion for clean energy conversion in gas turbine applications”, Applied Energy 2011: 88; 3685–93. [4] Khalil, A., E., E., Gupta, A., K., “Distributed swirl combustion for gas turbine application”, Applied Energy 2011: 88; 4898–907. [5] Wunning, J., A., Wunning, J., G., “Flameless oxidation to reduce thermal NO formation”, Progress in Energy and Combustion Science 2011: 23; 81–94. [6] Lammerl, O., Schutz, H., Schmitz, G., Luckerath, R., Stohr, M., Noll, B., “FLOX combustion at high power density and high flame temperature”, Journal of Engineering for Gas Turbines and Power 2010: 132(12); 121-503. [7] Weber, R., Smart, J., P., Vd Kamp, W., “On the (MILD) combustion of gaseous, liquid and solid fuels in high temperature preheated air”, Proceedings of the Combustion Institute 2005: 30; 2623–9. [8] Tsuji, H., Gupta, A., K., Hasegawa, T., Katsuki, M., Kishimoto, K., Morita, M. “High temperature air combustion from energy conservation to pollution reduction”, CRC Press LLC, Florida, US, 2003. [9] Khalil, A., E., E., “Gupta AK. Fostering distributed combustion in a swirl burner using prevaporized liquid fuels”, Applied Energy 2018: 211; 513–522. [10] Sabia, P., de Joannon, M., Lavadera, M.,L., Giudicianni, P., Ragucci, R., “Auto ignition delay times of propane mixtures under MILD conditions at atmospheric pressure”, Combustion and Flame 2014: 161, 3022–3030. [11] Sabia, P., de Joannon, M., Picarelli, A., Ragucci, R., “Methane auto-ignition delay times and oxidation regimes in MILD combustion at atmospheric pressure”, Combustion and Flame 2013: 160(1); 47–55. [12] Sabia, P., Lavadera, M.,L., Giudicianni, P., Sorrentino, G., Ragucci, R., de Joannon M., “CO2 and H2O effect on propane auto-ignition delay times under mild combustion operative conditions”, Combustion and Flame 2014: 162(3); 533–543. [13] Sidey, J., A., M., Mastorakos, E., “Simulations of laminar non-premixed flames of methane with hot combustion products as oxidiser”, Combustion and Flame 2016: 163; 1–11. [14] Li, P., Wang., F., Mi., J., Dally., B., B., Mei, Z., Zhang, J., “Parente A. Mechanisms of NO formation in MILD combustion of CH4/H2 fuel blends”, International Journal of Hydrogen Energy 2014: 39; 19187–19203. [15] Costa, M., Melo, M., Sousa, J., Levy, Y., “Experimental investigation of a novel combustor model for gas turbines”, Journal of Propulsion and Power 2009: 25: 609–617. [16] Lammel, O., Schutz, H., Schmitz, G., Luckerath, R., Stohr, M., Noll, B., Aigner, M., Hase, M., Krebs, W., “Flox combustion at high power density and high flame temperatures”, Journal of Engineering for Gas Turbines and Power 2010: 132; 121-503. [17] Sorrentino, G., Sabia, P., de Joannon, M., Cavaliere, A., Ragucci, R., “The Effect of Diluent on the Sustainability of MILD Combustion in a Cyclonic Burner”, Flow Turbulence and Combustion 2016: 96; 449–468.
There are 1 citations in total.

Details

Primary Language English
Subjects Energy Systems Engineering (Other)
Journal Section Research Article
Authors

Kenan Bilgin Kekeç 0000-0001-9537-3704

Serhat Karyeyen 0000-0002-8383-5518

Publication Date June 24, 2020
Submission Date June 17, 2020
Acceptance Date June 24, 2020
Published in Issue Year 2020 Volume: 5 Issue: 1

Cite

APA Kekeç, K. B., & Karyeyen, S. (2020). Combustion Characteristics on Colorless Distributed Combustion (CDC) in a Cyclonic Burner. International Journal of Energy Studies, 5(1), 43-55.
AMA Kekeç KB, Karyeyen S. Combustion Characteristics on Colorless Distributed Combustion (CDC) in a Cyclonic Burner. Int J Energy Studies. June 2020;5(1):43-55.
Chicago Kekeç, Kenan Bilgin, and Serhat Karyeyen. “Combustion Characteristics on Colorless Distributed Combustion (CDC) in a Cyclonic Burner”. International Journal of Energy Studies 5, no. 1 (June 2020): 43-55.
EndNote Kekeç KB, Karyeyen S (June 1, 2020) Combustion Characteristics on Colorless Distributed Combustion (CDC) in a Cyclonic Burner. International Journal of Energy Studies 5 1 43–55.
IEEE K. B. Kekeç and S. Karyeyen, “Combustion Characteristics on Colorless Distributed Combustion (CDC) in a Cyclonic Burner”, Int J Energy Studies, vol. 5, no. 1, pp. 43–55, 2020.
ISNAD Kekeç, Kenan Bilgin - Karyeyen, Serhat. “Combustion Characteristics on Colorless Distributed Combustion (CDC) in a Cyclonic Burner”. International Journal of Energy Studies 5/1 (June 2020), 43-55.
JAMA Kekeç KB, Karyeyen S. Combustion Characteristics on Colorless Distributed Combustion (CDC) in a Cyclonic Burner. Int J Energy Studies. 2020;5:43–55.
MLA Kekeç, Kenan Bilgin and Serhat Karyeyen. “Combustion Characteristics on Colorless Distributed Combustion (CDC) in a Cyclonic Burner”. International Journal of Energy Studies, vol. 5, no. 1, 2020, pp. 43-55.
Vancouver Kekeç KB, Karyeyen S. Combustion Characteristics on Colorless Distributed Combustion (CDC) in a Cyclonic Burner. Int J Energy Studies. 2020;5(1):43-55.