Research Article
BibTex RIS Cite

Numerical modeling of momentum, heat transfer and combustion mechanisms of non-premixed swirling flame movement inside a cylindrical combustor

Year 2021, Volume: 6 Issue: 2, 95 - 125, 28.12.2021

Abstract

This study presents a numerical investigation of momentum, heat transfer, and combustion mechanisms of
non-premixed swirling flame movement of a cylindrical combustion chamber. Fluent, a commercial CFD
software, has been used in calculations. Combinations created with different turbulence models, combustion
models and reaction mechanisms have been compared with experimental results. Realizable k-epsilon and
FR/EDM-4 step combination have increased capacity to predict reacting flow, resulting in better accuracy.
FR/EDM-4 step has provided much more reliable results than other scenarios, especially the Flamelet model
used with a detailed chemical mechanism. In addition, the effect of radiation heat transfer on the
temperature field has been investigated. Considering radiation heat transfer causes an increase in heat
transfer from the combustion chamber, which provides desired agreement with experimental results. Finally,
the effects of different Schmidt numbers on temperature and velocity fields have been investigated. Schmidt
number has not caused significant changes in the velocity field. Also, as the Schmidt number increases, it
has been observed that the flame temperatures decrease to a certain extent in the combustion chamber.

Supporting Institution

Erciyes University

Project Number

-

Thanks

The authors gratefully acknowledge Erciyes University for the use of the Ansys Fluent code.

References

  • 1. Silva, C., V., França, F., H., R., Vielmo, H., A. “Analysis of the turbulent, non-premixed combustion of natural gas in a cylindrical chamber with and without thermal radiation”, Combustion Science and Technology 2007: 179(8); 1605-1630.
  • 2. Jiang, L., Y., Campbell, I. “Prandtl/Schmidt number effect on temperature distribution in a generic combustor”, International Journal of Thermal Sciences 2009: 48(2); 322-330.
  • 3.Yang, X., He, Z., Qiu, P., Dong, S., Tan, H. “Numerical investigations on combustion and emission characteristics of a novel elliptical jet-stabilized model combustor”, Energy 2019: 170; 1082-1097.
  • 4. Solmaz, M., B., Uslu, S., Uzol, O. “Unsteady RANS for simulation of high swirling non-premixed methane-air flame”, 50nd American Institute of Aeronautics and Astronautics Joint Propulsion Conference Cleveland, OH, 2014.
  • [5] Keramida, E., P., Liakos, H., H., Founti, M., A., Boudouvis, A., G., Markatos, N., C. “The discrete transfer radiation model in a natural gas‐fired furnace”, International Journal for Numerical Methods in Fluids 2000; 34(5): 449-462.
  • [6] Yılmaz, İ. “Effect of swirl number on combustion characteristics in a natural gas diffusion flame”, Journal of Energy Resources Technology 2013;135(4):042204.
  • [7] Bahramian, A., Maleki, M., Medi, B. “CFD modeling of flame structures in a gas turbine combustion reactor: velocity, temperature, and species distribution”, International Journal of Chemical Reactor Engineering 2017: 15(4); 20160076.
  • [8] Hosseini, A., A., Ghodrat, M., Moghiman, M., Pourhoseini, S., H. “Numerical study of inlet air swirl intensity effect of a methane-air diffusion flame on its combustion characteristics”, Case Studies in Thermal Engineering 2020: 18; 100610.
  • [9] Silva, C., V., Deon, D., L., Centeno, F., R., França, F., H., R., Pereira, F., M. “Assessment of combustion models for numerical simulations of a turbulent non-premixed natural gas flame inside a cylindrical chamber”, Combustion Science and Technology 2018: 190(9); 1528-1556.
  • [10] Saygin, Y., Uslu, S. “Effect of radiation on gas turbine combustor liner temperature with conjugate heat transfer (CHT) methodology”, 52nd American Institute of Aeronautics and Astronautics Joint Propulsion Conference Salt Lake City, UT, 2016.
  • [11] Benim, A., C., Iqbal, S., Nahavandi, A., Wiedermann, A., Meier, W., Joos, F. “Analysis of turbulent swirling flow in an isothermal gas turbine combustor model”, Proceedings of the ASME Turbo Expo 2014: Turbine Technical Conference and Exposition Volume 4A: Combustion, Fuels and Emissions Düsseldorf, Germany, 2014.
  • [12] Yang, X., He, Z., Niu, Q., Dong, S., Tan, H. “Numerical analysis of turbulence radiation interaction effect on radiative heat transfer in a swirling oxyfuel furnace”, International Journal of Heat Mass Transfer 2019: 141; 1227-1237.
  • [13] İlbaş, M., Karyeyen, S., Yilmaz, İ. “Effect of swirl number on combustion characteristics of hydrogen-containing fuels in a combustor”, International Journal of Hydrogen Energy 2016: 41(17); 7185-7191.
  • [14] Benim, A., C., Iqbal, S., Meier, W., Joos, F., Wiedermann, A. “Numerical investigation of turbulent swirling flames with validation in a gas turbine model combustor”, Applied Thermal Engineering 2017: 110; 202–212.
  • [15] Yılmaz, İ., Taştan, M., İlbaş, M., Tarhan, C. “Effect of turbulence and radiation models on combustion characteristics in propane–hydrogen diffusion flames”, Energy Conversion and Management 2013: 72; 179-186.
  • [16] Garcia, A., M., Rendon, M., A., Amell, A., A. “Combustion model evaluation in a CFD simulation of a radiant-tube burner”, Fuel 2020: 276: 118013.
  • [17] İlbaş, M., Bektas, A., Karyeyen, S. “A new burner for oxy-fuel combustion of hydrogen containing low-calorific value syngases: An experimental and numerical study”, Fuel 2019: 256; 115990.
  • [18] Tyliszczak, A., Boguslawski, A., Nowak, D. “Numerical simulations of combustion process in a gas turbine with a single and multi-point fuel injection system”, Applied Energy 2016: 174; 153-165.
  • [19] Yilmaz, H., Cam, O., Tangoz, S., Yilmaz, I. “Effect of different turbulence models on combustion and emission characteristics of hydrogen/air flames”, International Journal of Hydrogen Energy 2017: 42(40); 25744-25755.
  • [20] Zhiyin, Y. “Large-eddy simulation: Past, present and the future”, Chinese Journal of Aeronautics 2015: 28(1); 11–24.
  • [21] Salim, S., M., Cheah, S. “Wall y + strategy for dealing with wall-bounded turbulent flows”, Proceedings of the International MultiConference of Engineers and Computer Scientists Vol II Hong Kong, 2009.
  • [22] Acampora, L., Marra, F., S., Martelli, E. “Comparison of different CH4-Air combustion mechanisms in a perfectly stirred reactor with oscillating residence times close to extinction”, Combustion Science and Technology 2016: 188(4-5); 707-718.
  • [23] Guessab, A., Aris, A., Bounif, A., Gökalp, I. “Numerical analysis of confined laminar diffusion flame - effects of chemical kinetic mechanisms”, International Journal of Advanced Research in Education & Technology 2013: 4(1); 59-78.
  • [24] Smith, G., P. et al., “GRI-Mech 3.0.” [Online]. Available: http://www.me.berkeley.edu/gri_mech/.
  • [25] ANSYS Inc., ANSYS, Fluent Theory Guide, 18.0 2017 Canonsburg, PA, USA.
Year 2021, Volume: 6 Issue: 2, 95 - 125, 28.12.2021

Abstract

Project Number

-

References

  • 1. Silva, C., V., França, F., H., R., Vielmo, H., A. “Analysis of the turbulent, non-premixed combustion of natural gas in a cylindrical chamber with and without thermal radiation”, Combustion Science and Technology 2007: 179(8); 1605-1630.
  • 2. Jiang, L., Y., Campbell, I. “Prandtl/Schmidt number effect on temperature distribution in a generic combustor”, International Journal of Thermal Sciences 2009: 48(2); 322-330.
  • 3.Yang, X., He, Z., Qiu, P., Dong, S., Tan, H. “Numerical investigations on combustion and emission characteristics of a novel elliptical jet-stabilized model combustor”, Energy 2019: 170; 1082-1097.
  • 4. Solmaz, M., B., Uslu, S., Uzol, O. “Unsteady RANS for simulation of high swirling non-premixed methane-air flame”, 50nd American Institute of Aeronautics and Astronautics Joint Propulsion Conference Cleveland, OH, 2014.
  • [5] Keramida, E., P., Liakos, H., H., Founti, M., A., Boudouvis, A., G., Markatos, N., C. “The discrete transfer radiation model in a natural gas‐fired furnace”, International Journal for Numerical Methods in Fluids 2000; 34(5): 449-462.
  • [6] Yılmaz, İ. “Effect of swirl number on combustion characteristics in a natural gas diffusion flame”, Journal of Energy Resources Technology 2013;135(4):042204.
  • [7] Bahramian, A., Maleki, M., Medi, B. “CFD modeling of flame structures in a gas turbine combustion reactor: velocity, temperature, and species distribution”, International Journal of Chemical Reactor Engineering 2017: 15(4); 20160076.
  • [8] Hosseini, A., A., Ghodrat, M., Moghiman, M., Pourhoseini, S., H. “Numerical study of inlet air swirl intensity effect of a methane-air diffusion flame on its combustion characteristics”, Case Studies in Thermal Engineering 2020: 18; 100610.
  • [9] Silva, C., V., Deon, D., L., Centeno, F., R., França, F., H., R., Pereira, F., M. “Assessment of combustion models for numerical simulations of a turbulent non-premixed natural gas flame inside a cylindrical chamber”, Combustion Science and Technology 2018: 190(9); 1528-1556.
  • [10] Saygin, Y., Uslu, S. “Effect of radiation on gas turbine combustor liner temperature with conjugate heat transfer (CHT) methodology”, 52nd American Institute of Aeronautics and Astronautics Joint Propulsion Conference Salt Lake City, UT, 2016.
  • [11] Benim, A., C., Iqbal, S., Nahavandi, A., Wiedermann, A., Meier, W., Joos, F. “Analysis of turbulent swirling flow in an isothermal gas turbine combustor model”, Proceedings of the ASME Turbo Expo 2014: Turbine Technical Conference and Exposition Volume 4A: Combustion, Fuels and Emissions Düsseldorf, Germany, 2014.
  • [12] Yang, X., He, Z., Niu, Q., Dong, S., Tan, H. “Numerical analysis of turbulence radiation interaction effect on radiative heat transfer in a swirling oxyfuel furnace”, International Journal of Heat Mass Transfer 2019: 141; 1227-1237.
  • [13] İlbaş, M., Karyeyen, S., Yilmaz, İ. “Effect of swirl number on combustion characteristics of hydrogen-containing fuels in a combustor”, International Journal of Hydrogen Energy 2016: 41(17); 7185-7191.
  • [14] Benim, A., C., Iqbal, S., Meier, W., Joos, F., Wiedermann, A. “Numerical investigation of turbulent swirling flames with validation in a gas turbine model combustor”, Applied Thermal Engineering 2017: 110; 202–212.
  • [15] Yılmaz, İ., Taştan, M., İlbaş, M., Tarhan, C. “Effect of turbulence and radiation models on combustion characteristics in propane–hydrogen diffusion flames”, Energy Conversion and Management 2013: 72; 179-186.
  • [16] Garcia, A., M., Rendon, M., A., Amell, A., A. “Combustion model evaluation in a CFD simulation of a radiant-tube burner”, Fuel 2020: 276: 118013.
  • [17] İlbaş, M., Bektas, A., Karyeyen, S. “A new burner for oxy-fuel combustion of hydrogen containing low-calorific value syngases: An experimental and numerical study”, Fuel 2019: 256; 115990.
  • [18] Tyliszczak, A., Boguslawski, A., Nowak, D. “Numerical simulations of combustion process in a gas turbine with a single and multi-point fuel injection system”, Applied Energy 2016: 174; 153-165.
  • [19] Yilmaz, H., Cam, O., Tangoz, S., Yilmaz, I. “Effect of different turbulence models on combustion and emission characteristics of hydrogen/air flames”, International Journal of Hydrogen Energy 2017: 42(40); 25744-25755.
  • [20] Zhiyin, Y. “Large-eddy simulation: Past, present and the future”, Chinese Journal of Aeronautics 2015: 28(1); 11–24.
  • [21] Salim, S., M., Cheah, S. “Wall y + strategy for dealing with wall-bounded turbulent flows”, Proceedings of the International MultiConference of Engineers and Computer Scientists Vol II Hong Kong, 2009.
  • [22] Acampora, L., Marra, F., S., Martelli, E. “Comparison of different CH4-Air combustion mechanisms in a perfectly stirred reactor with oscillating residence times close to extinction”, Combustion Science and Technology 2016: 188(4-5); 707-718.
  • [23] Guessab, A., Aris, A., Bounif, A., Gökalp, I. “Numerical analysis of confined laminar diffusion flame - effects of chemical kinetic mechanisms”, International Journal of Advanced Research in Education & Technology 2013: 4(1); 59-78.
  • [24] Smith, G., P. et al., “GRI-Mech 3.0.” [Online]. Available: http://www.me.berkeley.edu/gri_mech/.
  • [25] ANSYS Inc., ANSYS, Fluent Theory Guide, 18.0 2017 Canonsburg, PA, USA.
There are 25 citations in total.

Details

Primary Language English
Subjects Energy Systems Engineering (Other)
Journal Section Research Article
Authors

Fatih Eker 0000-0001-9937-152X

İlker Yılmaz 0000-0001-7956-7752

Project Number -
Publication Date December 28, 2021
Submission Date September 22, 2021
Acceptance Date November 1, 2021
Published in Issue Year 2021 Volume: 6 Issue: 2

Cite

APA Eker, F., & Yılmaz, İ. (2021). Numerical modeling of momentum, heat transfer and combustion mechanisms of non-premixed swirling flame movement inside a cylindrical combustor. International Journal of Energy Studies, 6(2), 95-125.
AMA Eker F, Yılmaz İ. Numerical modeling of momentum, heat transfer and combustion mechanisms of non-premixed swirling flame movement inside a cylindrical combustor. Int J Energy Studies. December 2021;6(2):95-125.
Chicago Eker, Fatih, and İlker Yılmaz. “Numerical Modeling of Momentum, Heat Transfer and Combustion Mechanisms of Non-Premixed Swirling Flame Movement Inside a Cylindrical Combustor”. International Journal of Energy Studies 6, no. 2 (December 2021): 95-125.
EndNote Eker F, Yılmaz İ (December 1, 2021) Numerical modeling of momentum, heat transfer and combustion mechanisms of non-premixed swirling flame movement inside a cylindrical combustor. International Journal of Energy Studies 6 2 95–125.
IEEE F. Eker and İ. Yılmaz, “Numerical modeling of momentum, heat transfer and combustion mechanisms of non-premixed swirling flame movement inside a cylindrical combustor”, Int J Energy Studies, vol. 6, no. 2, pp. 95–125, 2021.
ISNAD Eker, Fatih - Yılmaz, İlker. “Numerical Modeling of Momentum, Heat Transfer and Combustion Mechanisms of Non-Premixed Swirling Flame Movement Inside a Cylindrical Combustor”. International Journal of Energy Studies 6/2 (December 2021), 95-125.
JAMA Eker F, Yılmaz İ. Numerical modeling of momentum, heat transfer and combustion mechanisms of non-premixed swirling flame movement inside a cylindrical combustor. Int J Energy Studies. 2021;6:95–125.
MLA Eker, Fatih and İlker Yılmaz. “Numerical Modeling of Momentum, Heat Transfer and Combustion Mechanisms of Non-Premixed Swirling Flame Movement Inside a Cylindrical Combustor”. International Journal of Energy Studies, vol. 6, no. 2, 2021, pp. 95-125.
Vancouver Eker F, Yılmaz İ. Numerical modeling of momentum, heat transfer and combustion mechanisms of non-premixed swirling flame movement inside a cylindrical combustor. Int J Energy Studies. 2021;6(2):95-125.