Research Article
BibTex RIS Cite

Turkey's wave energy potential: A PESTLE Analysis

Year 2024, Volume: 9 Issue: 3, 423 - 443, 18.09.2024
https://doi.org/10.58559/ijes.1476137

Abstract

Turkey's energy landscape is characterised by a dynamic fusion of nonrenewable and renewable sources, which are crucial for meeting the nation's electricity demands. Sources, such as natural gas and coal derivatives, ensure grid stability, while renewables, such as hydroelectric, solar, and wind power, underscore Turkey's commitment to sustainability. Although there are currently no grid-connected wave energy plants, initiatives such as the OREN Ordu Energy project demonstrate the country's growing interest in wave energy. Turkey aims to integrate wave energy into its renewable energy mix, with the help of supportive regulations and incentives. This will bolster resilience and reduce environmental impact. However, successful integration requires overcoming regulatory hurdles, technological advancements, and environmental concerns. This study discusses the potential of wave energy and the importance of increasing the rate of renewable energy, with a PESTLE analysis.

References

  • [1] Karakaş E, Yıldıran OV. Evaluation of renewable energy alternatives for Turkey via modified fuzzy AHP. International Journal of Energy Economics and Policy 2019; 9(2): 31-39.
  • [2] Kim S, Jeon W. Which clean energy contributes better for growth?–dynamic panel analysis of heterogeneous impacts of individual renewable sources on economic growth. Energy & Environment 2024; 35(1): 312-330.
  • [3] Aslanturk O, Kıprızlı G. The role of renewable energy in ensuring energy security of supply and reducing energy-related import. International Journal of Energy Economics and Policy 2020; 10(2): 354-359.
  • [4] Tang Z, Xiang J, Duan Y, Zhang H, Wu Y, Wang W. Robust scheduling of virtual power plant with power-to-gas device. Journal of Physics: Conference Series 2022; 2260(1): 012009).
  • [5] Drew B, Plummer AR, Sahinkaya MN. A review of wave energy converter technology. Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy 2009; 223(8): 887-902.
  • [6] Cao Y, Townsend N, Tan M. Hybrid renewable energy system for ocean going platforms. OCEANS, Aberdeen, 2017.
  • [7] Ghaedi A, Gorginpour H. Reliability‐based operation studies of wave energy converters using modified PJM approach. International Transactions on Electrical Energy Systems 2021; 31(8): 12928.
  • [8] Bonnard CH, Blavette A, Bourguet S, Rongère F, Kovaltchouk T, Soulard T. Towards the optimal use of an existing MRE electrical network from an electrothermal perspective. PES Innovative Smart Grid Technologies Europe (ISGT-Europe), IEEE, 2019.
  • [9] Gemmell RE, Mütze A. Discussion of a new rocking buoy reaction based wave energy converter topology. The XIX International Conference on Electrical Machines-ICEM 2010.
  • [10] Yesilyurt MK, Öner İV, Ömeroğlu G, Yilmaz EÇ. A scrutiny study on wave energy potential and policy in TURKEY. Periodicals of Engineering and Natural Sciences 2017; 5(3): 286-297.
  • [11] Aoun NS, Harajli HA, Queffeulou P. Preliminary appraisal of wave power prospects in Lebanon. Renewable Energy 2013; 53: 165-173.
  • [12] Sulukan E. Wave energy potential assessment for Riva and Foça, Turkey. Politeknik Dergisi 2018; 21(1): 129- 135.
  • [13] Ergul EU, Ozbek T. Wave-energy plant site and converter type selection using multi-criteria decision making. Proceedings of the Institution of Civil Engineers-Energy 2022; 175(2): 49-63.
  • [14] Zalengera C, Blanchard RE, Eames PC, Juma AM, Chitawo ML, Gondwe KT. Overview of the Malawi energy situation and A PESTLE analysis for sustainable development of renewable energy. Renewable and Sustainable Energy Reviews 2014; 38: 335-347.
  • [15] Pryiatelchuk OA, Amirabbas S. Renewable energy for sustainable development in Middle East. Аctual Problems of International Relations 2021; 1(148): 70-80.
  • [16] Demirtas O, Derindag OF, Zarali F, Ocal O, Aslan A. Which renewable energy consumption is more efficient by fuzzy EDAS method based on PESTLE dimensions?. Environmental Science and Pollution Research 2021; 28(27): 36274-36287.
  • [17] Endiz MS, Coşgun AE. Assessing the potential of solar power generation in Turkey: A PESTLE analysis and comparative study of promising regions using PVsyst software. Solar Energy 2023; 266: 112153.
  • [18] Do Thi HT, Pasztor T, Fozer D, Manenti F, Toth AJ. Comparison of desalination technologies using renewable energy sources with life cycle, PESTLE, and multi-criteria decision analyses. Water 2021; 13(21): 3023.
  • [19] EPİAŞ. Real Time Production [Online] Available: https://seffaflik.epias.com.tr/transparency/uretim/gerceklesen-uretim/gercek-zamanli-uretim.xhtml
  • [20] TEIAS. May 2023 Turkey Electricity Statistics [Online] Available: https://ytbsbilgi.teias.gov.tr/ytbsbilgi/frm_istatistikler.jsf
  • [21] Çeçen M, Yavuz C, Tırmıkçı CA, Sarıkaya S, Yanıkoğlu E. Analysis and evaluation of distributed photovoltaic generation in electrical energy production and related regulations of Turkey. Clean Technologies and Environmental Policy 2022; 1-16.
  • [22] Sarikaya S, Yavuz C, Tirmikci CA, Cecen M, Gumus TE, Yavuz BC, Yalcin MA. An Innovative Adaptive Perturb and Observe Maximum Power Point Tracking Method for Photovoltaic Systems Using Illuminance Level as Perturbation Signal. Light & Engineering 2022; 30(4): 78-86.
  • [23] Law No. 5346 "Law on the Use of Renewable Energy Resources for the Purpose of Electricity Energy Generation", 2005. [Online] Available: https://www.resmigazete.gov.tr/
  • [24] Law No. 5627 on Energy Efficiency, 2007. [Online] Available: https://www.resmigazete.gov.tr/
  • [25] Presidential Decree No. 1044, 2019. [Online] Available: https://www.resmigazete.gov.tr/
  • [26] Electricity Market Licence Regulation, 2002. [Online] Available: https://www.resmigazete.gov.tr/
  • [27] Regulation On Renewable Energy Resource Areas, 2016. [Online] Available: https://www.resmigazete.gov.tr/
  • [28] Ramírez FJ, Honrubia-Escribano A, Gómez-Lázaro E, Pham DT. Combining feed-in tariffs and net- metering schemes to balance development in adoption of photovoltaic energy: Comparative economic assessment and policy implications for European countries. Energy Policy 2017; 102: 440-452.
  • [29] REGAL, "Legal Sources on Renewable Energy Germany: overall summary," 2019. Accessed: 10.08.2023. [Online]. Available: http://www.res-legal.eu/search-by-country/germany/.
  • [30] REGULATION ON STORAGE ACTIVITIES IN THE ELECTRICITY MARKET, 2021. [Online] Available: https://www.resmigazete.gov.tr/
  • [31] 2012 / 3305 numbered "Decision on State Aids in Investments", 2012. [Online] Available: https://www.resmigazete.gov.tr/
  • [32] Implementation Communiqué No. 2012/1 [Online] Available: https://www.resmigazete.gov.tr/
  • [33] Electricity Market Licence Regulation, 2013. [Online] Available: https://www.resmigazete.gov.tr/
  • [34] Presidential Decree No 5209, 2022. [Online] Available: https://www.resmigazete.gov.tr/
  • [35] Mazars, "GES ve RES Enerji Yatırımlarına Sağlanan Teşvikler," 2023. Accessed: 10.08.2023. [Online]. Available: www.mazars.com.tr
  • [36] A consortium, of Tractebel Engineering, IMDC, the companies of Vaisala, and M. E. T. U. (METU). "Wave Energy Potential Atlas (DEPA) of Turkey." https://imdc.be/en/reference/identifying-and-mapping-off-shore- wind-and-wave-energy-potential-of-turkey (accessed 30.12.2023).
  • [37] Ajans. A. AA. "Ordu'da dünyanın en büyük dalga enerjisi santrali için baharda ilk kazma vurulacak." https://www.aa.com.tr/tr/ekonomi/orduda-dunyanin-en-buyuk-dalga-enerjisi-santrali-icin-baharda-ilk- kazma-vurulacak/2768016 (accessed 30.12.2023).
  • [38] Citiroglu HK, Okur A. An approach to wave energy converter applications in Eregli on the western Black Sea coast of Turkey. Applied Energy 2014; 135: 738-747.
  • [39] Hafsa B, Mounir H. Wave generation in an OWC system for wave energy conversion. MATEC Web of Conferences 2020; 307: 01012.
  • [40] Sheng W, Lewis T. Energy conversion: A comparison of fix-and self-referenced wave energy converters. Energies 2016; 9(12): 1056.
  • [41] Wang Z, Li YG, Wang SM, He QY, Zhang J. Research on New Type Magnetohydrodynamic Ocean Wave Energy Conversion System. Applied Mechanics and Materials 2014; 556: 1856-1859.
  • [42] Guillou N, Lavidas G, Chapalain G. Wave energy resource assessment for exploitation—a review. Journal of Marine Science and Engineering 2020; 8(9): 705.
  • [43] Türkiye National Energy Plan, Republic of Türkiye Ministry of Energy and Natural Resources, 2022. [Online] Available: https://enerji.gov.tr/Media/Dizin/EIGM/tr/Raporlar/TUEP/T%C3%BCrkiye_Ulusal_Enerji_Plan%C4%B1.pdf.
Year 2024, Volume: 9 Issue: 3, 423 - 443, 18.09.2024
https://doi.org/10.58559/ijes.1476137

Abstract

References

  • [1] Karakaş E, Yıldıran OV. Evaluation of renewable energy alternatives for Turkey via modified fuzzy AHP. International Journal of Energy Economics and Policy 2019; 9(2): 31-39.
  • [2] Kim S, Jeon W. Which clean energy contributes better for growth?–dynamic panel analysis of heterogeneous impacts of individual renewable sources on economic growth. Energy & Environment 2024; 35(1): 312-330.
  • [3] Aslanturk O, Kıprızlı G. The role of renewable energy in ensuring energy security of supply and reducing energy-related import. International Journal of Energy Economics and Policy 2020; 10(2): 354-359.
  • [4] Tang Z, Xiang J, Duan Y, Zhang H, Wu Y, Wang W. Robust scheduling of virtual power plant with power-to-gas device. Journal of Physics: Conference Series 2022; 2260(1): 012009).
  • [5] Drew B, Plummer AR, Sahinkaya MN. A review of wave energy converter technology. Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy 2009; 223(8): 887-902.
  • [6] Cao Y, Townsend N, Tan M. Hybrid renewable energy system for ocean going platforms. OCEANS, Aberdeen, 2017.
  • [7] Ghaedi A, Gorginpour H. Reliability‐based operation studies of wave energy converters using modified PJM approach. International Transactions on Electrical Energy Systems 2021; 31(8): 12928.
  • [8] Bonnard CH, Blavette A, Bourguet S, Rongère F, Kovaltchouk T, Soulard T. Towards the optimal use of an existing MRE electrical network from an electrothermal perspective. PES Innovative Smart Grid Technologies Europe (ISGT-Europe), IEEE, 2019.
  • [9] Gemmell RE, Mütze A. Discussion of a new rocking buoy reaction based wave energy converter topology. The XIX International Conference on Electrical Machines-ICEM 2010.
  • [10] Yesilyurt MK, Öner İV, Ömeroğlu G, Yilmaz EÇ. A scrutiny study on wave energy potential and policy in TURKEY. Periodicals of Engineering and Natural Sciences 2017; 5(3): 286-297.
  • [11] Aoun NS, Harajli HA, Queffeulou P. Preliminary appraisal of wave power prospects in Lebanon. Renewable Energy 2013; 53: 165-173.
  • [12] Sulukan E. Wave energy potential assessment for Riva and Foça, Turkey. Politeknik Dergisi 2018; 21(1): 129- 135.
  • [13] Ergul EU, Ozbek T. Wave-energy plant site and converter type selection using multi-criteria decision making. Proceedings of the Institution of Civil Engineers-Energy 2022; 175(2): 49-63.
  • [14] Zalengera C, Blanchard RE, Eames PC, Juma AM, Chitawo ML, Gondwe KT. Overview of the Malawi energy situation and A PESTLE analysis for sustainable development of renewable energy. Renewable and Sustainable Energy Reviews 2014; 38: 335-347.
  • [15] Pryiatelchuk OA, Amirabbas S. Renewable energy for sustainable development in Middle East. Аctual Problems of International Relations 2021; 1(148): 70-80.
  • [16] Demirtas O, Derindag OF, Zarali F, Ocal O, Aslan A. Which renewable energy consumption is more efficient by fuzzy EDAS method based on PESTLE dimensions?. Environmental Science and Pollution Research 2021; 28(27): 36274-36287.
  • [17] Endiz MS, Coşgun AE. Assessing the potential of solar power generation in Turkey: A PESTLE analysis and comparative study of promising regions using PVsyst software. Solar Energy 2023; 266: 112153.
  • [18] Do Thi HT, Pasztor T, Fozer D, Manenti F, Toth AJ. Comparison of desalination technologies using renewable energy sources with life cycle, PESTLE, and multi-criteria decision analyses. Water 2021; 13(21): 3023.
  • [19] EPİAŞ. Real Time Production [Online] Available: https://seffaflik.epias.com.tr/transparency/uretim/gerceklesen-uretim/gercek-zamanli-uretim.xhtml
  • [20] TEIAS. May 2023 Turkey Electricity Statistics [Online] Available: https://ytbsbilgi.teias.gov.tr/ytbsbilgi/frm_istatistikler.jsf
  • [21] Çeçen M, Yavuz C, Tırmıkçı CA, Sarıkaya S, Yanıkoğlu E. Analysis and evaluation of distributed photovoltaic generation in electrical energy production and related regulations of Turkey. Clean Technologies and Environmental Policy 2022; 1-16.
  • [22] Sarikaya S, Yavuz C, Tirmikci CA, Cecen M, Gumus TE, Yavuz BC, Yalcin MA. An Innovative Adaptive Perturb and Observe Maximum Power Point Tracking Method for Photovoltaic Systems Using Illuminance Level as Perturbation Signal. Light & Engineering 2022; 30(4): 78-86.
  • [23] Law No. 5346 "Law on the Use of Renewable Energy Resources for the Purpose of Electricity Energy Generation", 2005. [Online] Available: https://www.resmigazete.gov.tr/
  • [24] Law No. 5627 on Energy Efficiency, 2007. [Online] Available: https://www.resmigazete.gov.tr/
  • [25] Presidential Decree No. 1044, 2019. [Online] Available: https://www.resmigazete.gov.tr/
  • [26] Electricity Market Licence Regulation, 2002. [Online] Available: https://www.resmigazete.gov.tr/
  • [27] Regulation On Renewable Energy Resource Areas, 2016. [Online] Available: https://www.resmigazete.gov.tr/
  • [28] Ramírez FJ, Honrubia-Escribano A, Gómez-Lázaro E, Pham DT. Combining feed-in tariffs and net- metering schemes to balance development in adoption of photovoltaic energy: Comparative economic assessment and policy implications for European countries. Energy Policy 2017; 102: 440-452.
  • [29] REGAL, "Legal Sources on Renewable Energy Germany: overall summary," 2019. Accessed: 10.08.2023. [Online]. Available: http://www.res-legal.eu/search-by-country/germany/.
  • [30] REGULATION ON STORAGE ACTIVITIES IN THE ELECTRICITY MARKET, 2021. [Online] Available: https://www.resmigazete.gov.tr/
  • [31] 2012 / 3305 numbered "Decision on State Aids in Investments", 2012. [Online] Available: https://www.resmigazete.gov.tr/
  • [32] Implementation Communiqué No. 2012/1 [Online] Available: https://www.resmigazete.gov.tr/
  • [33] Electricity Market Licence Regulation, 2013. [Online] Available: https://www.resmigazete.gov.tr/
  • [34] Presidential Decree No 5209, 2022. [Online] Available: https://www.resmigazete.gov.tr/
  • [35] Mazars, "GES ve RES Enerji Yatırımlarına Sağlanan Teşvikler," 2023. Accessed: 10.08.2023. [Online]. Available: www.mazars.com.tr
  • [36] A consortium, of Tractebel Engineering, IMDC, the companies of Vaisala, and M. E. T. U. (METU). "Wave Energy Potential Atlas (DEPA) of Turkey." https://imdc.be/en/reference/identifying-and-mapping-off-shore- wind-and-wave-energy-potential-of-turkey (accessed 30.12.2023).
  • [37] Ajans. A. AA. "Ordu'da dünyanın en büyük dalga enerjisi santrali için baharda ilk kazma vurulacak." https://www.aa.com.tr/tr/ekonomi/orduda-dunyanin-en-buyuk-dalga-enerjisi-santrali-icin-baharda-ilk- kazma-vurulacak/2768016 (accessed 30.12.2023).
  • [38] Citiroglu HK, Okur A. An approach to wave energy converter applications in Eregli on the western Black Sea coast of Turkey. Applied Energy 2014; 135: 738-747.
  • [39] Hafsa B, Mounir H. Wave generation in an OWC system for wave energy conversion. MATEC Web of Conferences 2020; 307: 01012.
  • [40] Sheng W, Lewis T. Energy conversion: A comparison of fix-and self-referenced wave energy converters. Energies 2016; 9(12): 1056.
  • [41] Wang Z, Li YG, Wang SM, He QY, Zhang J. Research on New Type Magnetohydrodynamic Ocean Wave Energy Conversion System. Applied Mechanics and Materials 2014; 556: 1856-1859.
  • [42] Guillou N, Lavidas G, Chapalain G. Wave energy resource assessment for exploitation—a review. Journal of Marine Science and Engineering 2020; 8(9): 705.
  • [43] Türkiye National Energy Plan, Republic of Türkiye Ministry of Energy and Natural Resources, 2022. [Online] Available: https://enerji.gov.tr/Media/Dizin/EIGM/tr/Raporlar/TUEP/T%C3%BCrkiye_Ulusal_Enerji_Plan%C4%B1.pdf.
There are 43 citations in total.

Details

Primary Language English
Subjects Clean Production Technologies, Electrical Energy Generation (Incl. Renewables, Excl. Photovoltaics), Renewable Energy Resources
Journal Section Research Article
Authors

Mehmet Çeçen 0000-0003-2344-3018

Publication Date September 18, 2024
Submission Date April 30, 2024
Acceptance Date August 23, 2024
Published in Issue Year 2024 Volume: 9 Issue: 3

Cite

APA Çeçen, M. (2024). Turkey’s wave energy potential: A PESTLE Analysis. International Journal of Energy Studies, 9(3), 423-443. https://doi.org/10.58559/ijes.1476137
AMA Çeçen M. Turkey’s wave energy potential: A PESTLE Analysis. Int J Energy Studies. September 2024;9(3):423-443. doi:10.58559/ijes.1476137
Chicago Çeçen, Mehmet. “Turkey’s Wave Energy Potential: A PESTLE Analysis”. International Journal of Energy Studies 9, no. 3 (September 2024): 423-43. https://doi.org/10.58559/ijes.1476137.
EndNote Çeçen M (September 1, 2024) Turkey’s wave energy potential: A PESTLE Analysis. International Journal of Energy Studies 9 3 423–443.
IEEE M. Çeçen, “Turkey’s wave energy potential: A PESTLE Analysis”, Int J Energy Studies, vol. 9, no. 3, pp. 423–443, 2024, doi: 10.58559/ijes.1476137.
ISNAD Çeçen, Mehmet. “Turkey’s Wave Energy Potential: A PESTLE Analysis”. International Journal of Energy Studies 9/3 (September 2024), 423-443. https://doi.org/10.58559/ijes.1476137.
JAMA Çeçen M. Turkey’s wave energy potential: A PESTLE Analysis. Int J Energy Studies. 2024;9:423–443.
MLA Çeçen, Mehmet. “Turkey’s Wave Energy Potential: A PESTLE Analysis”. International Journal of Energy Studies, vol. 9, no. 3, 2024, pp. 423-4, doi:10.58559/ijes.1476137.
Vancouver Çeçen M. Turkey’s wave energy potential: A PESTLE Analysis. Int J Energy Studies. 2024;9(3):423-4.