Research Article
BibTex RIS Cite

New boron-containing microcapsule for energy storage with upgraded flame retardant properties

Year 2024, Volume: 9 Issue: 4, 925 - 942, 25.12.2024
https://doi.org/10.58559/ijes.1537725

Abstract

This study includes encapsulation of a phase change material (PCM), n-octadecane, in boron functionalized polyurethane (PU) shell by interfacial polycondensation method without using cross-linker. Boron is expected to impart flame retardancy to PU based shells. The fact that the boric acid used in the study is abundant and cheap in our country makes the study economically advantageous. This work is noteworthy because it is the only microcapsule study using boric acid rather than ours. In this context, boric acid-containing capsule (TB) and ethylene glycol-containing capsule (T) were produced and compared in terms of latent enthalpy storage capacity, flame retardancy, and some other common specific properties. Fourier transform infrared (FT-IR) spectrophotometer, differential scanning calorimeter (DSC), thermal gravimetric (TG) analysis, bomb calorimeter analysis, particle size distribution (PSD) analysis and scanning electron microscopy (SEM) were utilized for characterization and purification of thermal resistance of produced microcapsules. The average particle diameter of produced microcapsules is between 13.4-20.0 µm and encapsulation efficiency is also between 28.4 % (68.6 Jg-1) -39.6 % (96.0 Jg-1). Limited oxygen index (LOI) values of TB and T are 20.2 and 18.7. Calorie releases for capsules are 34.6 kJg-1 and 16.7 kJg-1 respectively. N-octadecane is an organic compound and has a high vapor pressure especially at high temperatures. It was clearly seen in this study that its evaporation was prohibited up to 180 ℃ in PU-boron based shell by encapsulation.

References

  • [1] Banerjee A, Halvorsen KE, Eastmond-Spencer A, Sweitz SR. Sustainable development for whom and how? exploring the gaps between popular discourses and ground reality using the mexican jatropha biodiesel case. Environ. Manage. Healt. 2017; 59912–923. https://doi.org/10.1007/s00267-017-0848-x.
  • [2] Sevim O, Alakara EH, Guzelkucuk S. Fresh and hardened properties of cementitious composites incorporating firebrick powder from construction and demolition waste. Buildings. 2023; 13:45. https://doi.org/10.3390/buildings13010045.
  • [3] Mondal MK, Bose BP, P. Bansal P. Recycling waste thermoplastic for energy efficient construction materials: An experimental investigation. J. Environ. Manage. 2019; 240:119-125. https://doi.org/10.1016/j.jenvman.2019.03.016.
  • [4] Drochytka R, Zach J, Korjenic A, Hroudová J. Improving the energy efficiency in buildings while reducing the waste using autoclaved aerated concrete made from power industry waste. Energy Build. 2023; 58:319-323. https://doi.org/10.1016/j.enbuild.2012.10.029.
  • [5] Yang X, Liu Y, Lv Z, Hua Q, Liu L, Wang B, Tang J. Synthesis of high latent heat lauric acid/silica microcapsules by interfacial polymerization method for thermal energy storage. J. Energy Storage. 2021; 33:102059. https://doi.org/10.1016/j.est.2020.102059.
  • [6] Chen M, Qian Z, Liu H,Wang X. Size-tunable CaCO3@n-eicosane phase-change microcapsules for thermal energy storage, Colloids Surf., A, 2022; 640:128470. https://doi.org/10.1016/j.colsurfa.2022.128470.
  • [7] Sánchez-Fernández J, Aguilar T, Carrillo-Berdugo I,Gallardo JJ, Navas J. Multifunctional microcapsules based on ZnO and n-octadecane: From thermal energy storage tophotocatalytic activity. Mater. Chem. Phys. 2023; 299:127501. https://doi.org/10.1016/j.matchemphys.2023.127501.
  • [8] Deo DI, Gautrot JE, Sukhorukov GB, Wang W. Biofunctionalization of pegylated microcapsules for exclusive binding to protein substrates, Biomacromolecules. 2014;15:2555-2562. https://doi.org/10.1021/bm500412d.
  • [9] Shchukin DG, Sukhorukov GB, Möhwald H. Biomimetic fabrication of nanoengineered hydroxyapatite/ polyelectrolyte composite shell. Chem. Mater. 2003; 15:3947-3950. https://doi.org/10.1021/cm0341585.
  • [10] Su JF, Wang XY, Han S, Zhang XL, Guo YD, Wang YY, Tan YQ, Han NX, Li W. Preparation and physicochemical properties of microcapsules containing phase-change material with graphene/organic hybrid structure shells. J. Mater. Chem. A. 2017;5:23937–23951. https://doi.org/10.1039/C7TA06980D.
  • [11] Alizadegan F, Mirabedini SM, Pazokifard S, Moghadam SG, Farnood R. Improving self healing performance of polyurethane coatings using pu microcapsules containing bulky-ıpdı-ba and nano-clay. Prog. Org. Coat. 2018; 123:350-361. https://doi.org/10.1016/j.porgcoat.2018.07.024.
  • [12] Koh E, Kim NK, Shin J, Kim YW. Polyurethane Microcapsules for Self-Healing Paint Coatings. RSC Adv. 2014; 4:16214-16223. https://doi.org/10.1039/C4RA00213J
  • [13] Cho JS, Kwon A, Cho CG. Microencapsulation of octadecane as a phase-change material by interfacial polymerization in an emulsion system. Colloid Polym. Sci. 2002;280:260–266. https://doi.org/10.1007/s00396-001-0603-x.
  • [14] Hong K, Park S. Preparation of polyurethane microcapsules with different soft segments and their characteristics, In Reactive & Functional Polymers, 1999; 42:193-200. https://doi.org/10.1016/S1381-5148(98)00068-6.
  • [15] Haghayegh M, Mirabedini SM, Yeganeh H. Microcapsules containing multi-functional reactive isocyanate-terminated polyurethane prepolymer as a healing agent. Part 1: synthesis and optimization of reaction conditions. J. Mater. Sci. 2016; 51:3056–3068. https://doi.org/10.1007/s10853-015-9616-6.
  • [16] De Souza Rodrigues VH, Estêvão Carrara A, Rossi SS, Mattos Silva L, De Cássia Lazzarini Dutra R, Dutra JCN. Synthesis, characterization and qualitative assessment of self-healing capacity of PU microcapsules containing TDI and IPDI as a core agent. Mater. Today Commun. 2019;21: 100698. https://doi.org/10.1016/j.mtcomm.2019.100698.
  • [17] Šobak M, Štular D, Štirn Z, Žitko G, Korošin NCI. Jerman, Influence of the prepolymer type and synthesis parameters on self-healing anticorrosion properties of composite coatings containing isophorone diisocyanate-loaded polyurethane microcapsules. Polymers. 2021;13:840. https://doi.org/10.3390/polym13050840..
  • [18] He R, Wang J, Wang X, Li W, Zhang X. Fabrication and characterization of core–shell novel PU microcapsule using TDI trimer for release system. Colloids Surf. A. 2018;550:138–144. https://doi.org/10.1016/j.colsurfa.2018.03.071.
  • [19] Cai C, Ouyang X, Zhou L, Liu G, Wang Y, Zhu G, Yao J, Militky J, Venkataraman M, Zhang G. Co-solvent free interfacial polycondensation and properties of polyurea PCM microcapsules with dodecanol dodecanoate as core material. Sol. Energy. 2020;199:721–730. https://doi.org/10.1016/j.solener.2020.02.071.
  • [20] Alizadegan F, Pazokifard S, Mirabedini SM, Danaei M, Farnood R. Polyurethane-based microcapsules containing reactive isocyanate compounds: Study on preparation procedure and solvent replacement. Colloids Surf., A. 2017;529:750–759. https://doi.org/10.1016/j.colsurfa.2017.06.058 [21] Du W, Yu J, He B, He Y, He P, Li Y, Liu Q. Preparation and characterization of nano SiO2/paraffin/PE wax composite shell microcapsules containing TDI for self-healing of cementitious materials. Constr. Build. Mater. 2020;231:117060. https://doi.org/10.1016/j.conbuildmat.2019.117060.
  • [22] Ni P, Zhang M, Yan N. Effect of operating variables and monomers on the formation of polyurea microcapsules. J. Membr. Sci. 1995;103:51-55. https://doi.org/10.1016/03767388(94)00306-J.
  • [23] Polenz I, Weitz DA, Baret J. Polyurea microcapsules in microfluidics: surfactant control of soft membranes. Langmuir. 2015; 31:1127-1134. https://doi.org/10.1021/la5040189.
  • [24] Lu S, Xing J, Zhang Z, Jia G. Preparation and characterization of polyurea/polyurethane double shell microcapsules containing butyl stearate through interfacial polymerization. J. Appl. Polym. Sci. 2011;121:3377-3383. https://doi.org/10.1002/app.33994.
  • [25] Ma Y, Li Z, Wang H, Li H. Synthesis and optimization of polyurethane microcapsules containing BMIm.PF6 ionic liquid lubricant. J. Colloid Interface Sci. 2019;534:469-479. https://doi.org/10.1016/j.jcis.2018.09.059.
  • [26] Watanabe T, Sakai Y, Sugimori N, Ikeda T, Monzen M, Ono T. Microfluidic production of monodisperse biopolymer microcapsules for latent heat storage, ACS Materials Au. 2022;2:250-259. https://doi.org/10.1021/acsmaterialsau.1c00068.
  • [27] Maruyama T, Ishibashi Y, Sano M, Taguchi Y. Preparation and characterization of pesticide Fosthiazate-loaded microcapsules for controlled release system. Polym. Adv. Technol. 2023;34:1133-1142. https://doi.org/10.1002/pat.5957
  • [28] Pusla J. Using chain extenders to modify release rates of orange oil from poly(urea-urethane) microcapsules. Acta Chim. Slov. 2015;62:3. https://doi.org/10.17344/acsi.2015.1434.
  • [29] Paçacı T, Alkan C. Poly(boron-urethane) shell microencapsulated N-octadecane thermal energy storage materials for extended durability, J. Energy Storage. 2023;59:106491. https://doi.org/10.1016/j.est.2022.106491.
  • [30] Song Y, Chen KF, Wang JJ, Liu Y, Qi T, Li GL. Synthesis of polyurethane/poly(ureaformaldehyde) double-shelled microcapsules for self-healing anticorrosion coatings. Chin. J. Polym. Sci. (English Edition). 2020; 38:45–52. https://doi.org/10.1007/s10118-019-2317-x.
  • [31] Zhang H, Wang X. Synthesis and properties of microencapsulated n-octadecane with polyurea shells containing different soft segments for heat energy storage and thermal regulation. Sol. Energy Mater. Sol. Cells. 2009; 938:1366–1376. https://doi.org/10.1016/j.solmat.2009.02.021.
  • [32] Felix DCP, Shchukin DG. New polyurethane/docosane microcapsules as phase-change materials for thermal energy storage. Chem. Eur. J. Chemistry. 2015;2131:11174–11179. https://doi.org/10.1002/chem.201500666.
  • [33] Zhang Y, Zang C, Shi L, Jiao Q, Pan H, She-li Y. Preparation of boron-containg hybridized silicon rubber by in-situ polymerization of vinylphenyl-functionalized polyborosiloxane and liquid silicone rubber. Polymer. 2021; 219:123541. https://doi.org/10.1016/j.polymer.2021.123541.
  • [34] Alizadegan F, Mirabedini SM, Pazokifard S, Moghadam SG, Farnood R. Improving self healing performance of polyurethane coatings using PU microcapsules containing bulky-IPDI-BA and nano-clay. Prog. Org. Coat. 2018; 123:350-361. https://doi.org/10.1016/j.porgcoat.2018.07.024.
  • [35] Fathi Fathabadi H, Javidi M. Self-healing and corrosion performance of polyurethane coating containing polyurethane microcapsules. J. Coat. Technol. Res. 2021;18:1365–1378. https://doi.org/10.1007/s11998-021-00501-0.
  • [36] Liu X, Zheng H, Li G, Li H, Zhang P, Tong W, Gao C. Fabrication of polyurethane microcapsules with different shapes and their influence on cellular internalization. Colloids Surf., B. 2017; 158:675-681. https://doi.org/10.1016/j.colsurfb.2017.06.036.
  • [37] Shan XL, Wang JP, Zhang XX, Wang XC. Formaldehyde-free and thermal resistant microcapsules containing n-octadecane. Thermochim. Acta. 2009;494:104–109.https://doi.org/10.1016/j.tca.2009.04.026. [38] Zhang H, Wang X. Synthesis and properties of microencapsulated n-octadecane with polyurea shells containing different soft segments for heat energy storage and thermal regulation, Sol. Energy Mater. Sol. Cells. 2009; 93:1366-1376. https://doi.org/10.1016/j.solmat.2009.02.021.
  • [39] Xiong T, Shah KW, Kua HW. Thermal performance enhancement of cementitious composite containing polystyrene/n-octadecane microcapsules: An experimental and numerical study. Renewable Energy. 2021; 169:335–357. https://doi.org/10.1016/j.renene.2021.01.034
  • [40] Su W, Zhou T, Li Y, Lv Y. Development of microencapsulated phase change material with poly (methyl methacrylate) shell for thermal energy storage. Energy Procedia. 2019;158:4483-4488. https://doi.org/10.1016/j.egypro.2019.01.764
  • [41] Yu S, Wang X, Wu D. Microencapsulation of n-octadecane phase change material with calcium carbonate shell for enhancement of thermal conductivity and serving durability: Synthesis, microstructure, and performance evaluation. Appl. Energy. 2014;114:632–643. https://doi.org/10.1016/j.apenergy.2013.10.029
  • [42] Peng G, Hu Y, Dou G, Sun Y, Huan Y, Kang SH, Piao Z. Enhanced mechanical properties of epoxy composites embedded with MF/TiO2 hybrid shell microcapsules containing n-octadecane. J. Ind. Eng. Chem. 2022; 110:414–423. https://doi.org/10.1016/j.jiec.2022.03.018.
  • [43] Li Y, Zhao L, Wang H, Li B. Microencapsulated -octadecane with TiO2-doped silk fibroin shell for thermal energy storage and UV-shielding. J. Phys. Chem. Solids. 2019;134:97–104. https://doi.org/10.1016/j.jpcs.2019.04.007.
  • [44] Du J, Ibaseta N, Guichardon P. Characterization of polyurea microcapsules synthesized with an isocyanate of low toxicity and eco-friendly esters via microfluidics: Shape, shell thickness, morphology and encapsulation efficiency. Chem. Eng. Res. Des. 2022;182:256–272. https://doi.org/10.1016/j.cherd.2022.03.026.
  • [45] Beglarigale A, Eyice D, Seki Y, Çopuroğlu ÇO, Yazıcı H. Sodium silicate/polyurethane microcapsules synthesized for enhancing self-healing ability of cementitious materials: Optimization of stirring speeds and evaluation of self-healing efficiency. J. Build. Eng. 2021;39:102279. https://doi.org/10.1016/j.jobe.2021.102279.
  • [46]. Salaün F, Bedek G, Devaux E, Dupont D. Influence of the washings on the thermal properties of polyurea-urethane microcapsules containing xylitol to provide a cooling effect. Mater. Lett. 2011; 65:381–384. https://doi.org/10.1016/j.matlet.2010.10.041.
  • [47] Da Silva MAVR, Pilcher G, Santos LMNBF, Lima LMSS. Calibration and test of an aneroid mini-bomb combustion calorimeter. J. Chem. Thermodyn. 2007;39:689–697. https://doi.org/10.1016/j.jct.2006.10.013.
  • [48] Chen Q, Zhang J, Li J, Sun J, Xu B, Li H, Gu X, Zhang S. Synthesis of a novel triazine-based intumescent flame retardant and its effects on the fire performance of expanded polystyrene foams. Polym. Degrad. Stab. 2022;203:110079. https://doi.org/10.1016/j.polymdegradstab.2022.110079.
  • [49] Madakbaş S, Çakmakçi E, Kahraman MV. Preparation and thermal properties of polyacrylonitrile/hexagonal boron nitride composites. Thermochim. Acta. 2013;552:1–4. https://doi.org/10.1016/j.tca.2012.11.011.
  • [50] Osterberg PM, Niemeier JK, Welch CJ, Hawkins JM, Martinelli JR, Johnson TE, Root TW, Stahl SS. Experimental limiting oxygen concentrations for nine organic solvents at temperatures and pressures relevant to aerobic oxidations in the pharmaceutical industry. Org. Process Res. Dev. 2015; 19:1537–1543. https://doi.org/10.1021/op500328f.
Year 2024, Volume: 9 Issue: 4, 925 - 942, 25.12.2024
https://doi.org/10.58559/ijes.1537725

Abstract

References

  • [1] Banerjee A, Halvorsen KE, Eastmond-Spencer A, Sweitz SR. Sustainable development for whom and how? exploring the gaps between popular discourses and ground reality using the mexican jatropha biodiesel case. Environ. Manage. Healt. 2017; 59912–923. https://doi.org/10.1007/s00267-017-0848-x.
  • [2] Sevim O, Alakara EH, Guzelkucuk S. Fresh and hardened properties of cementitious composites incorporating firebrick powder from construction and demolition waste. Buildings. 2023; 13:45. https://doi.org/10.3390/buildings13010045.
  • [3] Mondal MK, Bose BP, P. Bansal P. Recycling waste thermoplastic for energy efficient construction materials: An experimental investigation. J. Environ. Manage. 2019; 240:119-125. https://doi.org/10.1016/j.jenvman.2019.03.016.
  • [4] Drochytka R, Zach J, Korjenic A, Hroudová J. Improving the energy efficiency in buildings while reducing the waste using autoclaved aerated concrete made from power industry waste. Energy Build. 2023; 58:319-323. https://doi.org/10.1016/j.enbuild.2012.10.029.
  • [5] Yang X, Liu Y, Lv Z, Hua Q, Liu L, Wang B, Tang J. Synthesis of high latent heat lauric acid/silica microcapsules by interfacial polymerization method for thermal energy storage. J. Energy Storage. 2021; 33:102059. https://doi.org/10.1016/j.est.2020.102059.
  • [6] Chen M, Qian Z, Liu H,Wang X. Size-tunable CaCO3@n-eicosane phase-change microcapsules for thermal energy storage, Colloids Surf., A, 2022; 640:128470. https://doi.org/10.1016/j.colsurfa.2022.128470.
  • [7] Sánchez-Fernández J, Aguilar T, Carrillo-Berdugo I,Gallardo JJ, Navas J. Multifunctional microcapsules based on ZnO and n-octadecane: From thermal energy storage tophotocatalytic activity. Mater. Chem. Phys. 2023; 299:127501. https://doi.org/10.1016/j.matchemphys.2023.127501.
  • [8] Deo DI, Gautrot JE, Sukhorukov GB, Wang W. Biofunctionalization of pegylated microcapsules for exclusive binding to protein substrates, Biomacromolecules. 2014;15:2555-2562. https://doi.org/10.1021/bm500412d.
  • [9] Shchukin DG, Sukhorukov GB, Möhwald H. Biomimetic fabrication of nanoengineered hydroxyapatite/ polyelectrolyte composite shell. Chem. Mater. 2003; 15:3947-3950. https://doi.org/10.1021/cm0341585.
  • [10] Su JF, Wang XY, Han S, Zhang XL, Guo YD, Wang YY, Tan YQ, Han NX, Li W. Preparation and physicochemical properties of microcapsules containing phase-change material with graphene/organic hybrid structure shells. J. Mater. Chem. A. 2017;5:23937–23951. https://doi.org/10.1039/C7TA06980D.
  • [11] Alizadegan F, Mirabedini SM, Pazokifard S, Moghadam SG, Farnood R. Improving self healing performance of polyurethane coatings using pu microcapsules containing bulky-ıpdı-ba and nano-clay. Prog. Org. Coat. 2018; 123:350-361. https://doi.org/10.1016/j.porgcoat.2018.07.024.
  • [12] Koh E, Kim NK, Shin J, Kim YW. Polyurethane Microcapsules for Self-Healing Paint Coatings. RSC Adv. 2014; 4:16214-16223. https://doi.org/10.1039/C4RA00213J
  • [13] Cho JS, Kwon A, Cho CG. Microencapsulation of octadecane as a phase-change material by interfacial polymerization in an emulsion system. Colloid Polym. Sci. 2002;280:260–266. https://doi.org/10.1007/s00396-001-0603-x.
  • [14] Hong K, Park S. Preparation of polyurethane microcapsules with different soft segments and their characteristics, In Reactive & Functional Polymers, 1999; 42:193-200. https://doi.org/10.1016/S1381-5148(98)00068-6.
  • [15] Haghayegh M, Mirabedini SM, Yeganeh H. Microcapsules containing multi-functional reactive isocyanate-terminated polyurethane prepolymer as a healing agent. Part 1: synthesis and optimization of reaction conditions. J. Mater. Sci. 2016; 51:3056–3068. https://doi.org/10.1007/s10853-015-9616-6.
  • [16] De Souza Rodrigues VH, Estêvão Carrara A, Rossi SS, Mattos Silva L, De Cássia Lazzarini Dutra R, Dutra JCN. Synthesis, characterization and qualitative assessment of self-healing capacity of PU microcapsules containing TDI and IPDI as a core agent. Mater. Today Commun. 2019;21: 100698. https://doi.org/10.1016/j.mtcomm.2019.100698.
  • [17] Šobak M, Štular D, Štirn Z, Žitko G, Korošin NCI. Jerman, Influence of the prepolymer type and synthesis parameters on self-healing anticorrosion properties of composite coatings containing isophorone diisocyanate-loaded polyurethane microcapsules. Polymers. 2021;13:840. https://doi.org/10.3390/polym13050840..
  • [18] He R, Wang J, Wang X, Li W, Zhang X. Fabrication and characterization of core–shell novel PU microcapsule using TDI trimer for release system. Colloids Surf. A. 2018;550:138–144. https://doi.org/10.1016/j.colsurfa.2018.03.071.
  • [19] Cai C, Ouyang X, Zhou L, Liu G, Wang Y, Zhu G, Yao J, Militky J, Venkataraman M, Zhang G. Co-solvent free interfacial polycondensation and properties of polyurea PCM microcapsules with dodecanol dodecanoate as core material. Sol. Energy. 2020;199:721–730. https://doi.org/10.1016/j.solener.2020.02.071.
  • [20] Alizadegan F, Pazokifard S, Mirabedini SM, Danaei M, Farnood R. Polyurethane-based microcapsules containing reactive isocyanate compounds: Study on preparation procedure and solvent replacement. Colloids Surf., A. 2017;529:750–759. https://doi.org/10.1016/j.colsurfa.2017.06.058 [21] Du W, Yu J, He B, He Y, He P, Li Y, Liu Q. Preparation and characterization of nano SiO2/paraffin/PE wax composite shell microcapsules containing TDI for self-healing of cementitious materials. Constr. Build. Mater. 2020;231:117060. https://doi.org/10.1016/j.conbuildmat.2019.117060.
  • [22] Ni P, Zhang M, Yan N. Effect of operating variables and monomers on the formation of polyurea microcapsules. J. Membr. Sci. 1995;103:51-55. https://doi.org/10.1016/03767388(94)00306-J.
  • [23] Polenz I, Weitz DA, Baret J. Polyurea microcapsules in microfluidics: surfactant control of soft membranes. Langmuir. 2015; 31:1127-1134. https://doi.org/10.1021/la5040189.
  • [24] Lu S, Xing J, Zhang Z, Jia G. Preparation and characterization of polyurea/polyurethane double shell microcapsules containing butyl stearate through interfacial polymerization. J. Appl. Polym. Sci. 2011;121:3377-3383. https://doi.org/10.1002/app.33994.
  • [25] Ma Y, Li Z, Wang H, Li H. Synthesis and optimization of polyurethane microcapsules containing BMIm.PF6 ionic liquid lubricant. J. Colloid Interface Sci. 2019;534:469-479. https://doi.org/10.1016/j.jcis.2018.09.059.
  • [26] Watanabe T, Sakai Y, Sugimori N, Ikeda T, Monzen M, Ono T. Microfluidic production of monodisperse biopolymer microcapsules for latent heat storage, ACS Materials Au. 2022;2:250-259. https://doi.org/10.1021/acsmaterialsau.1c00068.
  • [27] Maruyama T, Ishibashi Y, Sano M, Taguchi Y. Preparation and characterization of pesticide Fosthiazate-loaded microcapsules for controlled release system. Polym. Adv. Technol. 2023;34:1133-1142. https://doi.org/10.1002/pat.5957
  • [28] Pusla J. Using chain extenders to modify release rates of orange oil from poly(urea-urethane) microcapsules. Acta Chim. Slov. 2015;62:3. https://doi.org/10.17344/acsi.2015.1434.
  • [29] Paçacı T, Alkan C. Poly(boron-urethane) shell microencapsulated N-octadecane thermal energy storage materials for extended durability, J. Energy Storage. 2023;59:106491. https://doi.org/10.1016/j.est.2022.106491.
  • [30] Song Y, Chen KF, Wang JJ, Liu Y, Qi T, Li GL. Synthesis of polyurethane/poly(ureaformaldehyde) double-shelled microcapsules for self-healing anticorrosion coatings. Chin. J. Polym. Sci. (English Edition). 2020; 38:45–52. https://doi.org/10.1007/s10118-019-2317-x.
  • [31] Zhang H, Wang X. Synthesis and properties of microencapsulated n-octadecane with polyurea shells containing different soft segments for heat energy storage and thermal regulation. Sol. Energy Mater. Sol. Cells. 2009; 938:1366–1376. https://doi.org/10.1016/j.solmat.2009.02.021.
  • [32] Felix DCP, Shchukin DG. New polyurethane/docosane microcapsules as phase-change materials for thermal energy storage. Chem. Eur. J. Chemistry. 2015;2131:11174–11179. https://doi.org/10.1002/chem.201500666.
  • [33] Zhang Y, Zang C, Shi L, Jiao Q, Pan H, She-li Y. Preparation of boron-containg hybridized silicon rubber by in-situ polymerization of vinylphenyl-functionalized polyborosiloxane and liquid silicone rubber. Polymer. 2021; 219:123541. https://doi.org/10.1016/j.polymer.2021.123541.
  • [34] Alizadegan F, Mirabedini SM, Pazokifard S, Moghadam SG, Farnood R. Improving self healing performance of polyurethane coatings using PU microcapsules containing bulky-IPDI-BA and nano-clay. Prog. Org. Coat. 2018; 123:350-361. https://doi.org/10.1016/j.porgcoat.2018.07.024.
  • [35] Fathi Fathabadi H, Javidi M. Self-healing and corrosion performance of polyurethane coating containing polyurethane microcapsules. J. Coat. Technol. Res. 2021;18:1365–1378. https://doi.org/10.1007/s11998-021-00501-0.
  • [36] Liu X, Zheng H, Li G, Li H, Zhang P, Tong W, Gao C. Fabrication of polyurethane microcapsules with different shapes and their influence on cellular internalization. Colloids Surf., B. 2017; 158:675-681. https://doi.org/10.1016/j.colsurfb.2017.06.036.
  • [37] Shan XL, Wang JP, Zhang XX, Wang XC. Formaldehyde-free and thermal resistant microcapsules containing n-octadecane. Thermochim. Acta. 2009;494:104–109.https://doi.org/10.1016/j.tca.2009.04.026. [38] Zhang H, Wang X. Synthesis and properties of microencapsulated n-octadecane with polyurea shells containing different soft segments for heat energy storage and thermal regulation, Sol. Energy Mater. Sol. Cells. 2009; 93:1366-1376. https://doi.org/10.1016/j.solmat.2009.02.021.
  • [39] Xiong T, Shah KW, Kua HW. Thermal performance enhancement of cementitious composite containing polystyrene/n-octadecane microcapsules: An experimental and numerical study. Renewable Energy. 2021; 169:335–357. https://doi.org/10.1016/j.renene.2021.01.034
  • [40] Su W, Zhou T, Li Y, Lv Y. Development of microencapsulated phase change material with poly (methyl methacrylate) shell for thermal energy storage. Energy Procedia. 2019;158:4483-4488. https://doi.org/10.1016/j.egypro.2019.01.764
  • [41] Yu S, Wang X, Wu D. Microencapsulation of n-octadecane phase change material with calcium carbonate shell for enhancement of thermal conductivity and serving durability: Synthesis, microstructure, and performance evaluation. Appl. Energy. 2014;114:632–643. https://doi.org/10.1016/j.apenergy.2013.10.029
  • [42] Peng G, Hu Y, Dou G, Sun Y, Huan Y, Kang SH, Piao Z. Enhanced mechanical properties of epoxy composites embedded with MF/TiO2 hybrid shell microcapsules containing n-octadecane. J. Ind. Eng. Chem. 2022; 110:414–423. https://doi.org/10.1016/j.jiec.2022.03.018.
  • [43] Li Y, Zhao L, Wang H, Li B. Microencapsulated -octadecane with TiO2-doped silk fibroin shell for thermal energy storage and UV-shielding. J. Phys. Chem. Solids. 2019;134:97–104. https://doi.org/10.1016/j.jpcs.2019.04.007.
  • [44] Du J, Ibaseta N, Guichardon P. Characterization of polyurea microcapsules synthesized with an isocyanate of low toxicity and eco-friendly esters via microfluidics: Shape, shell thickness, morphology and encapsulation efficiency. Chem. Eng. Res. Des. 2022;182:256–272. https://doi.org/10.1016/j.cherd.2022.03.026.
  • [45] Beglarigale A, Eyice D, Seki Y, Çopuroğlu ÇO, Yazıcı H. Sodium silicate/polyurethane microcapsules synthesized for enhancing self-healing ability of cementitious materials: Optimization of stirring speeds and evaluation of self-healing efficiency. J. Build. Eng. 2021;39:102279. https://doi.org/10.1016/j.jobe.2021.102279.
  • [46]. Salaün F, Bedek G, Devaux E, Dupont D. Influence of the washings on the thermal properties of polyurea-urethane microcapsules containing xylitol to provide a cooling effect. Mater. Lett. 2011; 65:381–384. https://doi.org/10.1016/j.matlet.2010.10.041.
  • [47] Da Silva MAVR, Pilcher G, Santos LMNBF, Lima LMSS. Calibration and test of an aneroid mini-bomb combustion calorimeter. J. Chem. Thermodyn. 2007;39:689–697. https://doi.org/10.1016/j.jct.2006.10.013.
  • [48] Chen Q, Zhang J, Li J, Sun J, Xu B, Li H, Gu X, Zhang S. Synthesis of a novel triazine-based intumescent flame retardant and its effects on the fire performance of expanded polystyrene foams. Polym. Degrad. Stab. 2022;203:110079. https://doi.org/10.1016/j.polymdegradstab.2022.110079.
  • [49] Madakbaş S, Çakmakçi E, Kahraman MV. Preparation and thermal properties of polyacrylonitrile/hexagonal boron nitride composites. Thermochim. Acta. 2013;552:1–4. https://doi.org/10.1016/j.tca.2012.11.011.
  • [50] Osterberg PM, Niemeier JK, Welch CJ, Hawkins JM, Martinelli JR, Johnson TE, Root TW, Stahl SS. Experimental limiting oxygen concentrations for nine organic solvents at temperatures and pressures relevant to aerobic oxidations in the pharmaceutical industry. Org. Process Res. Dev. 2015; 19:1537–1543. https://doi.org/10.1021/op500328f.
There are 48 citations in total.

Details

Primary Language English
Subjects Electrochemical Energy Storage and Conversion
Journal Section Research Article
Authors

Timur Paçacı 0009-0001-4378-8200

Publication Date December 25, 2024
Submission Date August 23, 2024
Acceptance Date November 19, 2024
Published in Issue Year 2024 Volume: 9 Issue: 4

Cite

APA Paçacı, T. (2024). New boron-containing microcapsule for energy storage with upgraded flame retardant properties. International Journal of Energy Studies, 9(4), 925-942. https://doi.org/10.58559/ijes.1537725
AMA Paçacı T. New boron-containing microcapsule for energy storage with upgraded flame retardant properties. Int J Energy Studies. December 2024;9(4):925-942. doi:10.58559/ijes.1537725
Chicago Paçacı, Timur. “New Boron-Containing Microcapsule for Energy Storage With Upgraded Flame Retardant Properties”. International Journal of Energy Studies 9, no. 4 (December 2024): 925-42. https://doi.org/10.58559/ijes.1537725.
EndNote Paçacı T (December 1, 2024) New boron-containing microcapsule for energy storage with upgraded flame retardant properties. International Journal of Energy Studies 9 4 925–942.
IEEE T. Paçacı, “New boron-containing microcapsule for energy storage with upgraded flame retardant properties”, Int J Energy Studies, vol. 9, no. 4, pp. 925–942, 2024, doi: 10.58559/ijes.1537725.
ISNAD Paçacı, Timur. “New Boron-Containing Microcapsule for Energy Storage With Upgraded Flame Retardant Properties”. International Journal of Energy Studies 9/4 (December 2024), 925-942. https://doi.org/10.58559/ijes.1537725.
JAMA Paçacı T. New boron-containing microcapsule for energy storage with upgraded flame retardant properties. Int J Energy Studies. 2024;9:925–942.
MLA Paçacı, Timur. “New Boron-Containing Microcapsule for Energy Storage With Upgraded Flame Retardant Properties”. International Journal of Energy Studies, vol. 9, no. 4, 2024, pp. 925-42, doi:10.58559/ijes.1537725.
Vancouver Paçacı T. New boron-containing microcapsule for energy storage with upgraded flame retardant properties. Int J Energy Studies. 2024;9(4):925-42.