Research Article
BibTex RIS Cite

A novel mathematical model for boiling water reactor design and performance optimization

Year 2025, Volume: 10 Issue: 1, 1227 - 1243, 18.03.2025
https://doi.org/10.58559/ijes.1620711

Abstract

This paper presents a novel mathematical model for the design and performance analysis of Boiling Water Reactors (BWRs). The model integrates neutron diffusion, thermal-hydraulic behavior, and boiling heat transfer to provide a comprehensive framework for predicting reactor core performance under both steady-state and transient conditions. Key equations governing neutron flux distribution, power generation, temperature gradients, and coolant flow are derived and coupled to simulate the interactions between nuclear fission and heat transfer processes. The main contribution of this work lies in the dynamic coupling of neutron kinetics and thermal-hydraulic processes, which provides a more accurate representation of reactor behavior compared to traditional models. This integrated approach allows for more precise predictions of power-to-temperature relationships and coolant flow patterns, which are critical for optimizing reactor design and enhancing fuel utilization. Additionally, the model’s ability to simulate transient behaviors, such as reactivity insertion and power ramp-up, further strengthens its utility in reactor safety and performance optimization. The proposed model offers significant potential for improving the efficiency and safety of BWRs by enabling better core design, optimizing fuel usage, and enhancing thermal management. Future work will focus on refining the model to incorporate more detailed fuel behavior and multi-phase flow dynamics to improve its predictive accuracy and applicability in more complex reactor systems.

References

  • [1] Newell R, Raimi D, Villanueva S, Prest B. Global energy outlook 2021: pathways from paris. Resources for the Future 2021; 8: 39.
  • [2] Benoît Norris C, Traverzo M, Neugebauer S, Ekener E, Schaubroeck T, Russo Garrido S. Guidelines for social life cycle assessment of products and organizations 2020.United Nations environment programme 2020.
  • [3] Bell GI, Glasstone S. Nuclear reactor theory. US atomic energy commission washington dc (united states) 1970.
  • [4] Shabestary AM , Viereckl F, Zhang Y, Manthey R, Lucas D, Schuster C, Leyer S, Hurtado A, Hampe Uwe. Modelling of passive heat removal systems: a review with reference to the framatome kerena bwr reactor: Part I. Energies 2020; 13(1): 35.
  • [5] Aksan N. An overview on thermal-hydraulic phenomena for water cooled nuclear reactors; part I: SETs, and ITFs of PWRs, BWRs, VVERs. Nuclear engineering and design 2019; 354; 110212.
  • [6] Tao WQ, Chen L, Ling K, Chen YJ. Some advances in numerical simulations of multiscale heat transfer problems and particularly for boiling heat transfer. Annual review of heat transfer 2021; 24.
  • [7] Zhang X, Zeng Q, Chen H. Development and validation of a coupled neutron diffusion-thermal hydraulic calculation procedure for fast reactor applications. Annals of nuclear energy 2020; 139: 107243.
  • [8] Ivanov A, Sanchez V, Stieglitz R, Ivanov K. Large-scale monte carlo neutron transport calculations with thermal hydraulic feedback. Annals of nuclear energy 2015; 84: 204-219.
  • [9] Worsnop RP, Scheuerer M, Hamill TM, Lundquist JK. Generating wind power scenarios for probabilistic ramp event prediction using multivariate statistical post-processing. Wind energy science 2018; 3(1): 371-393.
  • [10] Wei J, Ao H, Arend B, Beher S, Bollen G, Bultman N, Casagrande F, Chang W, Choi Y, Cogan S, Compton C, Cortesi M, Curtin J, Davidson K, Du X, Elliott K, Ewert B, Facco A, Fila A, Fukushima K, Ganni V, Ganshyn A, Ginter T, Glasmacher T, Guo J, Hao Y, Hartung W, Hasan N, Hausmann M, Holland K, Hosoyama K, Hseuh HC, Hurh P, Ikegami M, Jager D, Jones S Joseph N, Kanemura T, Kelly M, Kim S, Knowles C, Konomi T, Kortum B, Kwan E, Lange T, Larmann M, Larter T, Laturkar K, Laxdal R, LeTourneau J, Li Z, Lidia S, Machicoane G, Magsig C, Manwiller P, Marti F, Maruta T, Metzgar E, et al. FRIB transition to user operations, power ramp up, and upgrade perspectives. Argonne National Laboratory (ANL), argonne, IL (united states), Fermi national accelerator laboratory (FNAL), Batavia, IL (united states), thomas jefferson national accelerator aacility (TJNAF), newport news, VA (united states) 2023.
  • [11] Wei J, Ao H, Arend B, Beher S, Bollen G, Bultman N, Casagrande F, Chang W, Choi Y, Cogan S, Compton C, Cortesi M, Curtin J, Davidson K, Du X, Elliott K, Ewert B, Facco A, Fila A, Fukushima K, Ganni V, Ganshyn A, Ginter T, Glasmacher T, Guo J, Hao Y, Hartung W, Hasan N, Hausmann M, Holland K, Hosoyama K, Hseuh HC, Hurh P, Ikegami M, Jager D, Jones S Joseph N, Kanemura T, Kelly M, Kim S, Knowles C, Konomi T, Kortum B, Kwan E, Lange T, Larmann M, Larter T, Laturkar K, Laxdal R, LeTourneau J, Li Z, Lidia S, Machicoane G, Magsig C, Manwiller P, Marti F, Maruta T, Metzgar E, et al. FRIB beam power ramp-up: status and plans. Fermi national accelerator laboratory (FNAL), Batavia, IL (united states); Argonne national laboratory (ANL), Argonne, IL (united states) 2024.
  • [12] Peng X, Liu D, Lee D. Dynamic characteristics of microscale boiling. International communications in heat and mass transfer 2001; 37(1): 81-86.
  • [13] Dong L, Gong S, Cheng P. Direct numerical simulations of film boiling heat transfer by a phase-change lattice Boltzmann method. International communications in heat and mass transfer 2018; 91: 109-116.
  • [14] Wang Z, Zheng X, Chryssostomidis C, Karniadakis GE. A phase-field method for boiling heat transfer. Journal of computational physics 2021; 435: 110239.
  • [15] Oka Y. Accidents and transients analyses of a super fast reactor with single flow pass core. Nuclear engineering and design 2014; 273: 165-174.
  • [16] Woolstenhulme N, Evans J, Chipman A, Armstrong R. Nuclear fuels for transient test reactors. Annals of nuclear energy 2024; 204: 110519.
  • [17] Holschuh T, Woolstenhulme N, Baker B, Bess J, Davis C, Parry J. Transient reactor test facility advanced transient shapes. Nuclear technology; 205(10): 1346-1353.

Kaynar Su Reaktörü Tasarımı ve Performans Optimizasyonu İçin Yeni Bir Matematiksel Model

Year 2025, Volume: 10 Issue: 1, 1227 - 1243, 18.03.2025
https://doi.org/10.58559/ijes.1620711

Abstract

Bu çalışma, Kaynar Su Reaktörlerinin tasarımı ve performans analizi için yenilikçi bir matematiksel model sunmaktadır. Model, nötron difüzyonu, termal-hidrolik davranış ve kaynar ısı transferini birleştirerek, reaktör çekirdeği performansını hem kararlı durum hem de geçici koşullar altında tahmin etmek için kapsamlı bir çerçeve sağlar. Nötron akı dağılımı, enerji üretimi, sıcaklık gradyanları ve soğutma akışı ile ilgili ana denklemler türetilir ve nükleer fisyon ile ısı transferi süreçleri arasındaki etkileşimleri simüle etmek için birleştirilir. Bu çalışmanın ana katkısı, nötron kinetiği ve termal-hidrolik süreçlerin dinamik bağlantısında yatmaktadır; bu, geleneksel modellere kıyasla reaktör davranışının daha doğru bir şekilde temsil edilmesini sağlar. Bu entegre yaklaşım, reaktör tasarımını optimize etmek ve yakıt kullanımını artırmak için kritik olan güç-sıcaklık ilişkileri ve soğutma akışı desenlerinin daha hassas tahmin edilmesini sağlar. Ayrıca, modelin geçici davranışları simüle etme yeteneği, örneğin reaktivite eklenmesi ve güç artışı, reaktör güvenliği ve performans optimizasyonunda faydasını daha da artırmaktadır. Önerilen model, daha iyi çekirdek tasarımı yapılmasını, yakıt kullanımının optimize edilmesini ve termal yönetimin iyileştirilmesini sağlayarak BWR'lerin verimliliğini ve güvenliğini artırma potansiyeline sahiptir. Gelecekteki çalışmalar, daha karmaşık reaktör sistemlerinde tahmin doğruluğunu ve uygulanabilirliğini artırmak amacıyla yakıt davranışını ve çok fazlı akış dinamiklerini daha ayrıntılı bir şekilde dahil ederek modeli geliştirmenin üzerinde odaklanacaktır.

References

  • [1] Newell R, Raimi D, Villanueva S, Prest B. Global energy outlook 2021: pathways from paris. Resources for the Future 2021; 8: 39.
  • [2] Benoît Norris C, Traverzo M, Neugebauer S, Ekener E, Schaubroeck T, Russo Garrido S. Guidelines for social life cycle assessment of products and organizations 2020.United Nations environment programme 2020.
  • [3] Bell GI, Glasstone S. Nuclear reactor theory. US atomic energy commission washington dc (united states) 1970.
  • [4] Shabestary AM , Viereckl F, Zhang Y, Manthey R, Lucas D, Schuster C, Leyer S, Hurtado A, Hampe Uwe. Modelling of passive heat removal systems: a review with reference to the framatome kerena bwr reactor: Part I. Energies 2020; 13(1): 35.
  • [5] Aksan N. An overview on thermal-hydraulic phenomena for water cooled nuclear reactors; part I: SETs, and ITFs of PWRs, BWRs, VVERs. Nuclear engineering and design 2019; 354; 110212.
  • [6] Tao WQ, Chen L, Ling K, Chen YJ. Some advances in numerical simulations of multiscale heat transfer problems and particularly for boiling heat transfer. Annual review of heat transfer 2021; 24.
  • [7] Zhang X, Zeng Q, Chen H. Development and validation of a coupled neutron diffusion-thermal hydraulic calculation procedure for fast reactor applications. Annals of nuclear energy 2020; 139: 107243.
  • [8] Ivanov A, Sanchez V, Stieglitz R, Ivanov K. Large-scale monte carlo neutron transport calculations with thermal hydraulic feedback. Annals of nuclear energy 2015; 84: 204-219.
  • [9] Worsnop RP, Scheuerer M, Hamill TM, Lundquist JK. Generating wind power scenarios for probabilistic ramp event prediction using multivariate statistical post-processing. Wind energy science 2018; 3(1): 371-393.
  • [10] Wei J, Ao H, Arend B, Beher S, Bollen G, Bultman N, Casagrande F, Chang W, Choi Y, Cogan S, Compton C, Cortesi M, Curtin J, Davidson K, Du X, Elliott K, Ewert B, Facco A, Fila A, Fukushima K, Ganni V, Ganshyn A, Ginter T, Glasmacher T, Guo J, Hao Y, Hartung W, Hasan N, Hausmann M, Holland K, Hosoyama K, Hseuh HC, Hurh P, Ikegami M, Jager D, Jones S Joseph N, Kanemura T, Kelly M, Kim S, Knowles C, Konomi T, Kortum B, Kwan E, Lange T, Larmann M, Larter T, Laturkar K, Laxdal R, LeTourneau J, Li Z, Lidia S, Machicoane G, Magsig C, Manwiller P, Marti F, Maruta T, Metzgar E, et al. FRIB transition to user operations, power ramp up, and upgrade perspectives. Argonne National Laboratory (ANL), argonne, IL (united states), Fermi national accelerator laboratory (FNAL), Batavia, IL (united states), thomas jefferson national accelerator aacility (TJNAF), newport news, VA (united states) 2023.
  • [11] Wei J, Ao H, Arend B, Beher S, Bollen G, Bultman N, Casagrande F, Chang W, Choi Y, Cogan S, Compton C, Cortesi M, Curtin J, Davidson K, Du X, Elliott K, Ewert B, Facco A, Fila A, Fukushima K, Ganni V, Ganshyn A, Ginter T, Glasmacher T, Guo J, Hao Y, Hartung W, Hasan N, Hausmann M, Holland K, Hosoyama K, Hseuh HC, Hurh P, Ikegami M, Jager D, Jones S Joseph N, Kanemura T, Kelly M, Kim S, Knowles C, Konomi T, Kortum B, Kwan E, Lange T, Larmann M, Larter T, Laturkar K, Laxdal R, LeTourneau J, Li Z, Lidia S, Machicoane G, Magsig C, Manwiller P, Marti F, Maruta T, Metzgar E, et al. FRIB beam power ramp-up: status and plans. Fermi national accelerator laboratory (FNAL), Batavia, IL (united states); Argonne national laboratory (ANL), Argonne, IL (united states) 2024.
  • [12] Peng X, Liu D, Lee D. Dynamic characteristics of microscale boiling. International communications in heat and mass transfer 2001; 37(1): 81-86.
  • [13] Dong L, Gong S, Cheng P. Direct numerical simulations of film boiling heat transfer by a phase-change lattice Boltzmann method. International communications in heat and mass transfer 2018; 91: 109-116.
  • [14] Wang Z, Zheng X, Chryssostomidis C, Karniadakis GE. A phase-field method for boiling heat transfer. Journal of computational physics 2021; 435: 110239.
  • [15] Oka Y. Accidents and transients analyses of a super fast reactor with single flow pass core. Nuclear engineering and design 2014; 273: 165-174.
  • [16] Woolstenhulme N, Evans J, Chipman A, Armstrong R. Nuclear fuels for transient test reactors. Annals of nuclear energy 2024; 204: 110519.
  • [17] Holschuh T, Woolstenhulme N, Baker B, Bess J, Davis C, Parry J. Transient reactor test facility advanced transient shapes. Nuclear technology; 205(10): 1346-1353.
There are 17 citations in total.

Details

Primary Language English
Subjects Energy
Journal Section Research Article
Authors

Manolya Güldürek 0000-0002-6906-6986

Publication Date March 18, 2025
Submission Date January 15, 2025
Acceptance Date February 4, 2025
Published in Issue Year 2025 Volume: 10 Issue: 1

Cite

APA Güldürek, M. (2025). A novel mathematical model for boiling water reactor design and performance optimization. International Journal of Energy Studies, 10(1), 1227-1243. https://doi.org/10.58559/ijes.1620711
AMA Güldürek M. A novel mathematical model for boiling water reactor design and performance optimization. Int J Energy Studies. March 2025;10(1):1227-1243. doi:10.58559/ijes.1620711
Chicago Güldürek, Manolya. “A Novel Mathematical Model for Boiling Water Reactor Design and Performance Optimization”. International Journal of Energy Studies 10, no. 1 (March 2025): 1227-43. https://doi.org/10.58559/ijes.1620711.
EndNote Güldürek M (March 1, 2025) A novel mathematical model for boiling water reactor design and performance optimization. International Journal of Energy Studies 10 1 1227–1243.
IEEE M. Güldürek, “A novel mathematical model for boiling water reactor design and performance optimization”, Int J Energy Studies, vol. 10, no. 1, pp. 1227–1243, 2025, doi: 10.58559/ijes.1620711.
ISNAD Güldürek, Manolya. “A Novel Mathematical Model for Boiling Water Reactor Design and Performance Optimization”. International Journal of Energy Studies 10/1 (March 2025), 1227-1243. https://doi.org/10.58559/ijes.1620711.
JAMA Güldürek M. A novel mathematical model for boiling water reactor design and performance optimization. Int J Energy Studies. 2025;10:1227–1243.
MLA Güldürek, Manolya. “A Novel Mathematical Model for Boiling Water Reactor Design and Performance Optimization”. International Journal of Energy Studies, vol. 10, no. 1, 2025, pp. 1227-43, doi:10.58559/ijes.1620711.
Vancouver Güldürek M. A novel mathematical model for boiling water reactor design and performance optimization. Int J Energy Studies. 2025;10(1):1227-43.