Hybrid renewable energy systems optimization: A case study of an industrial application using HOMER
Year 2025,
Volume: 10 Issue: 2, 409 - 435, 26.06.2025
Tuba Tezer
Abstract
This study designed four different scenarios for a grid-connected hybrid renewable energy system (HRES) to meet the energy demand of a factory in Balıkesir Organized Industrial Zone. The scenarios, which combine photovoltaic (PV) panels, wind turbines, biogas, and diesel generators, were simulated and optimized using Hybrid Optimization of Multiple Energy Resources (HOMER Pro®) software. The optimization results showed that the most optimal solution is a grid-connected HRES with PV, wind turbines, and a biogas generator, having the lowest net present cost (NPC) of 104 million $ and cost of energy (COE) of 0.0708 $/kWh. This system can supply 79.4% of the factory's electricity demand, which averages 245,560 kWh daily, from renewable sources. The optimal configuration consists of a 4000 kW PV, 6000 kW wind turbine, and 5000 kW biogas generator. Sensitivity analysis revealed that a 22% increase in grid electricity prices results in about a 7% increase in both NPC and COE. Additionally, the effect of changes in the real discount rate (RDR) was analyzed, showing that a 200% increase in RDR leads to a 30% decrease in NPC and a 6% increase in COE.
Ethical Statement
I hereby declare that the study titled "Hybrid Renewable Energy Systems Optimization: A Case Study of an Industrial Application Using HOMER", submitted to your journal, is my original work. I have adhered to scientific ethical principles and guidelines at all stages of the research, including preparation, data collection, analysis, and presentation. All data and information obtained within the scope of this study have been properly cited, and all referenced sources are included in the bibliography.
Furthermore, I affirm my compliance with ethical duties and responsibilities in accordance with the principles outlined by the Committee on Publication Ethics (COPE).
In the event of any violation of this statement, I accept full moral and legal responsibility for any consequences that may arise.
References
-
[1] Yılmaz U, Demirören A, Zeynelgil HL. Gökçeada’da Yenilenebilir Enerji Kaynakları ile Elektrik Enerjisi Üretim Potansiyelinin Araştırılması. Politeknik Dergisi Journal of Polytechnic 2010; 13(3): 215-223.
-
[2] Mamur H, Yakar MC, Zerafet A. Bir Kamu Binası İçin Hibrit Enerji Sistemi Fizibilitesi. International Journal of Technological Sciences (IJTS) 2019; 11(1): 51-58.
-
[3] Duman AC, Güler Ö. Economic analysis of grid-connected residential rooftop PV systems in Turkey. Renewable Energy 2020; 148: 697-711.
-
[4] Yalılı Kılıç M, Adalı S. Elektrik İhtiyacının Karşılanmasında Hibrit Yenilenebilir Enerji Sistemi-Süpermarket Örneği. OKU Fen Bilimleri Enstitüsü Dergisi 2022; 5(1): 224-235.
-
[5] Yalılı Kılıç M, Adalı S. Bir Apartmanın Yenilenebilir Enerji Sistem Maliyetinin HOMER Pro Kullanılarak Belirlenmesi. Bitlis Eren Üniversitesi Fen Bilimleri Dergisi 2022; 11(1): 13-20.
-
[6] Yılmaz G, Şahin M, Akyazı Ö, Öztürk B. Şebeke Bağlantılı Hibrit Yenilenebilir Enerji Sisteminin Homer ile Ekonomik ve Çevresel Analizi: İzmir Endüstriyel Bölgesi Örneği. Karadeniz Fen Bilimleri Dergisi 2023; 13(3): 1090-1106.
-
[7] Aktar AK, Karakılıç M. Yenilenebilir enerji kaynaklarından beslenen bir mikro şebekenin enerji depolama sistemleri desteği ile optimum çalışması. Gazi Üniversitesi Fen Bilimleri Dergisi Part C: Tasarım ve Teknoloji 2024; 12(4): 1018-1034.
-
[8] Altın C. Parçacık Sürü Optimizasyonu Temelli Ultra Hızlı Yenilenebilir Enerji Kaynağı Optimizasyon Aracı Tasarımı. Journal of the Faculty of Engineering and Architecture of Gazi University 2024; 39(4): 2289-2303.
-
[9] Güven AF, Mengi OÖ. Assessing metaheuristic algorithms in determining dimensions of hybrid energy systems for isolated rural environments: Exploring renewable energy systems with hydrogen storage features. Journal of Cleaner Production 2023; 428: 139339.
-
[10] Akinyele D, Olabode E, Amole A. Review of fuel cell technologies and applications for sustainable microgrid systems. Inventions 2020; 5(3): 1-35.
-
[11] Güven AF, Mete MK. Balıkesir’in Erdek İlçesi için Şebeke Bağlantılı Hibrit Enerji Sistemi Fizibilite Çalışması ve Ekonomik Analizi. Mühendis ve Makina 2022; 63(706): 138-158.
-
[12] Murugaperumal K, Raj PADV. Feasibility design and techno-economic analysis of hybrid renewable energy system for rural electrification. Solar Energy 2019; 188: 1068-1083.
-
[13] Kumar R, Channi HK. A PV-Biomass off-grid hybrid renewable energy system (HRES) for rural electrification: Design, optimization and techno-economic-environmental analysis. Journal of Cleaner Production 2022; 349: 131347.
-
[14] Araoye TO, Ashigwuike EC, Mbunwe MJ, Bakinson OI, Ozue TI. Techno-economic modeling and optimal sizing of autonomous hybrid microgrid renewable energy system for rural electrification sustainability using HOMER and grasshopper optimization algorithm. Renewable Energy 2024; 229: 120712.
-
[15] Jasim AM, Jasim BH, Baiceanu FC, Neagu BC. Optimized Sizing of Energy Management System for Off-Grid Hybrid Solar/Wind/Battery/Biogasifier/Diesel Microgrid System. Mathematics 2023; 11(5): 1248.
-
[16] Tabak A. Konya İlinde Bir Fabrikanın Enerji Talebinin Karşılanması için Hibrit Enerji Üretim Sisteminin Analiz ve Tasarımı. Uluslararası Mühendislik Araştırma ve Geliştirme Dergisi 2021; 13(1): 220-230.
-
[17] Yalılı Kılıç M, Adalı S, Aydın M. Elektrik ihtiyacının sağlanmasında hibrit yenilenebilir enerji sistem tasarımı: Bursa tekstil fabrikası örneği. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi 2022; 27(3): 897-910.
-
[18] Enerji Verimliliği Eylem Planı. Enerji ve Tabii Kaynaklar Bakanlığı, 2024. https://enerjiverimliligi.enerji.gov.tr/template/dist/pdf/Eylem_Plani.pdf Erişim tarihi: 09.02.2024.
-
[19] Enerji ve Tabii Kaynaklar Bakanlığı. 2024. https://enerji.gov.tr/bilgi-merkezi-enerji-elektrik Erişim tarihi: 09.02.2024.
-
[20] Kocabey S. Determination of Biogas Potential from Animal Waste for Balıkesir Province. European Journal of Science and Technology 2019; 17: 234-243.
-
[21] Jahangir MH, Javanshir F, Kargarzadeh A. Economic analysis and optimal design of hydrogen/diesel backup system to improve energy hubs providing the demands of sport complexes. International Journal of Hydrogen Energy 2021; 46(27): 14109-14129.
-
[22] Baseer M, Alqahtani A, Rehman S. Techno-economic design and evaluation of hybrid energy systems for residential communities: Case study of Jubail industrial city. Journal of Cleaner Production 2019; 237.
-
[23] Tehrani MM, et al. Techno-economic investigation of a hybrid biomass renewable energy system to achieve the goals of SDG-17 in deprived areas of Iran. Energy Conversion and Management 2023; 291: 117319.
-
[24] HOMER Pro. 2024. https://homerenergy.com/products/pro/docs/3.15/index.html Erişim tarihi: Aralık, 2024.
-
[25] Tezer T, Yaman R. A Pareto Optimum Approach and a Power Management Strategy for a Stand-Alone Wind Turbine-PV-Hydrogen with Reformer Hybrid Renewable Energy System. Environmental Progress & Sustainable Energy 2022; 41(4): e13772.
-
[26] Dauda AK, Ismail MS. Design of isolated hybrid systems minimizing costs and pollutant emissions. Renewable Energy 2012; 44: 215-224.
-
[27] Lilienthal P, Lambert T, Gilman P. Computer modeling of renewable power systems. Encyclopedia of Energy 2004; 1: 633-647.
-
[28] Yimen N, Hamandjoda O, Meva’a L, Ndzana B, Nganhou J. Analyzing of a Photovoltaic/Wind/Biogas/Pumped-Hydro Off-Grid Hybrid System for Rural Electrification in Sub-Saharan Africa—Case Study of Djoundé in Northern Cameroon. Energies 2018; 11(10): 2644.
-
[29] T.C. Enerji ve Tabii Kaynaklar Bakanlığı. Güneş enerjisi potansiyel atlası. https://gepa.enerji.gov.tr/mycalculator/pages/10.aspx
-
[30] T.C. Enerji ve Tabii Kaynaklar Bakanlığı. Rüzgâr enerjisi potansiyel atlası. https://repa.enerji.gov.tr/REPA/
-
[31] Türkay B, Telli A. Economic Analysis of Standalone and Grid Connected Hybrid Energy Systems. Renewable Energy 2011; 36: 1931-1943.
-
[32] Krishnamoorthy M, Raj PADV. Optimum design and analysis of HRES for rural electrification: A case study of Korkadu district. Soft Computing 2020; 24: 13051-13068.
-
[33] Tezer T, Akyuz E, Gul M. Optimal and reliable design of stand-alone hybrid renewable energy systems: A multi-objective approach. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects 2024; 46(1): 10948–10963.
-
[34] Altunsoy Ü. Kargo Taşımacılık Sisteminde Elektrikli Araçlar Kullanımı Üzerine İnceleme. International Anatolia Academic Online Journal Sciences Journal 2021; 7(2): 1-14.
-
[35] Baucells M, Bodily SE. The Discount Rate for Investment Analysis Applying Expected Utility. Decision Analysis 2024; 21(2): 125-141.
-
[36] Congressional Budget Office (CBO). Discount Rates for Federal Budgeting. 2024. Available at: https://www.cbo.gov/system/files/2024-10/60284-Discount-Rates.pdf.
-
[37] Bilal M, Oladigbolu JO, Mujeeb A, Al-Turki YA. Cost-effective optimization of on-grid electric vehicle charging systems with integrated renewable energy and energy storage: An economic and reliability analysis. Journal of Energy Storage 2024; 100(Part A): 113170.