Research Article
BibTex RIS Cite

Year 2025, Volume: 10 Issue: 3, 983 - 993, 25.09.2025
https://doi.org/10.58559/ijes.1693074

Abstract

References

  • [1] Nguyen TH., Phan HM., Nguyen LTT., Hoang MH., Cu ST., Nguyen QT., Yokozawa T., Nguyen HT., Facile direct arylation polycondensation of random semiconducting terpolymers for single-junction non-fullerene organic solar cells. Synthetic Metals 2023; 296(117375): 1-9.
  • [2] Wei T., Gu T., Liang X., Xu H., Chayal G., Pandey SK., Sharma GD., D-A-D type small molecule donors based on BODIPY skeleton for bulk heterojunction organic solar cells. Journal of Photochemistry & Photobiology, A: Chemistry 2024; 446(115103): 1-11.
  • [3] Riede M., Spoltore D., Leo K., Organic solar cells—the path to commercial success. Advanced Energy Materials 2021; 11(2002653): 1-10.
  • [4] Alkhalayfeh MA., Aziz AA., Pakhuruddin MZ. An overview of enhanced polymer solar cells with embedded plasmonic nanoparticles. Renewable and Sustainable Energy Reviews 2021; 141(110726): 1-8.
  • [5] Seo JY., Akın S., Zalibera M., Preciado MAR., Kim HS., Zakeeruddin SM., Milic JV., Gratzel M., Dopant engineering for spiro-OMeTAD hole-transporting materials towards efficient perovskite solar cells. Advanced Functional Materials 2021; 31(2102124): 1-7.
  • [6] Ma YF., Zhang Y., Zhang HL., Solid additives in organic solar cells: progress and perspectives. Journal of Materials Chemistry C 2022; 10(7): 2364-2374.
  • [7] Kaçuş H., Aydoğan Ş., Biber M., Metin Ö., Sevim M., The power conversion efficiency optimization of the solar cells by doping of (Au:Ag) nanoparticles into P3HT:PCBM active layer prepared with chlorobenzene and chloroform solvents. Materials Research Express 2019; 6(095104): 1-11.
  • [8] Yao K., Zhong H., Liu Z., Xiong M., Leng S., Zhang J., Xu YX., Wang W., Zhou L., Huang H., Jen AKY., Plasmonic metal nanoparticles with core−bishell structure for high-performance organic and perovskite solar cells. ACS Nano 2019; 13(5): 5397-5409.
  • [9] Mutlu A., Can M., Tozlu C., Performance improvement of organic solar cell via incorporation of donor type self-assembled interfacial monolayer. Thin Solid Films 2019; 685: 88-96.
  • [10] Havare AK., Alsaeedi MS., Modifying transparent electrode with conjugated organic semiconductor hole transport material as interface for enhancing performance of organic solar cell. Journal of Saudi Chemical Society 2022; 26(101575): 1-8.
  • [11] Jadhav SA., Self-assembled monolayers (SAMs) of carboxylic acids: an overview. Central European Journal of Chemistry 2011; 9(3): 369-378.
  • [12] Arkan E., Yalçın E., Ünal M., Arkan MZY., Can M., Tozlu., Demiç Ş. Effect of functional groups of self assembled monolayer molecules on the performance of inverted perovskite solar cell. Materials Chemistry and Physics 2020; 254(123435): 1-11.
  • [13] Lin Y., Firdaus Y., Işıkgör FH., Nugraha MI., Yengel E., Harrison GT., Hallani R., El-Labban A., Faber H., Ma C., Zheng X., Subbiah A., Howells CT., Bakr OM., McCulloch I., Wolf SD., Tsetseris L., Anthopoulos TD., Self-assembled monolayer enables hole transport layer-free organic solar cells with 18% efficiency and improved operational stability. ACS Energy Letters 2020; 5(9): 2935-2944.
  • [14] Alghamdi ARM., Yanagida M., Shirai Y., Andersson GG., Miyano K. Surface passivation of sputtered NiOx using a SAM interface layer to enhance the performance of perovskite solar cells. ACS Omega 2022; 7(14): 12147-12157.
  • [15] Albonetti C., Oliveri G., Shehu A., Quiroga SD., Murgia M., Biscarini F. Unravelling molecular disorder at SAM-functionalized charge injection interfaces in organic field-effect transistors. Organic Electronics 2022; 100(106330): 1-13.
  • [16] Liu W., Lu H., Zhang Y., Huang H., Zheng X., Liu Y., Wu Y., Xu X., Enhancing the performance of organic solar cells by modification of cathode with a self-assembled monolayer of aromatic organophosphonic acid. Chinese Chemical Letters 2023; 34(107495): 1-5.
  • [17] Zhang S., Zhan L., Li S., Li CZ., Chen H., Enhanced performance of inverted non-fullerene organic solar cells through modifying zinc oxide surface with self-assembled monolayers. Organic Electronics 2018; 63: 143-148.
  • [18] Tozlu C., Mutlu A., Can M., Havare A.K., Demiç Ş., İçli S., Effect of TiO2 modification with amino-based self-assembled monolayer on inverted organic solar cell. Applied Surface Science 2017; 422: 1129-1138.
  • [19] Yoo SI., Do TT., Ha YE., Jo MY., Park J., Kang YC., Kimy H., Effect of self-assembled monolayer treated ZnO on the photovoltaic properties of inverted polymer solar cells. Bulletin of the Korean Chemical Society 2014; 35(2): 569-574.
  • [20] Kim W.H., Lyu H.K., Han Y.S., Woo S., Efficient inverted bulk-heterojunction polymer solar cells with self-assembled monolayer modified zinc oxide. Journal of Nanoscience and Nanotechnology 2013; 13: 7145-7148.
  • [21] Docampo P., Ball JM., Darwich M., Eperon GE., Snaith HJ., Efficient organometal trihalide perovskite planar-heterojunction solar cells on flexible polymer substrates. Nature Communications 2013; 4(2761): 1-6.
  • [22] Yurtdaş S., Can M., Karaman M., Tozlu C., Polimerik güneş hücrelerinde Ag nanopartikül katkılı TiO2 tampon tabakasının kendiliğinden organize olan tek tabaka moleküller (SAM) ile modifiye edilmesi. Düzce Üniversitesi Bilim ve Teknoloji Dergisi 2020; 8(1): 1058-1071.

Effects of MBA molecule modification on the efficiency of organic solar cells

Year 2025, Volume: 10 Issue: 3, 983 - 993, 25.09.2025
https://doi.org/10.58559/ijes.1693074

Abstract

In recent years, the rising energy demand and the drawbacks associated with fossil fuels have greatly emphasized the need to develop renewable energy sources. Among these, solar energy emerges as a prominent option due to its vast potential. One approach to harness solar energy for electricity generation is through the use of organic solar cells. In this study, the effects of modifying the interface between TiO2 and the active layer in organic solar cells using 4-Methoxybenzoic acid (MBA) on device performance were investigated. To determine the impact of the modification on surface properties, contact angle measurements and UV-Vis spectrophotometry analyses were performed. The obtained results demonstrated that MBA coating alters the surface energy of TiO2. Optical characterization data revealed that MBA coating does not adversely affect light transmittance. Photovoltaic characterization results showed that devices modified with MBA exhibited higher short-circuit current density (Jsc), fill factor (FF), and power conversion efficiency (PCE) compared to reference devices. When comparing the best-performing devices, an increase of approximately 10% in Jsc and 16% in PCE was observed. Based on average values, Jsc improved by 8% and PCE by 14%. The findings indicate that interface engineering using SAM molecules is an effective approach to enhancing the PCE of organic solar cells.

References

  • [1] Nguyen TH., Phan HM., Nguyen LTT., Hoang MH., Cu ST., Nguyen QT., Yokozawa T., Nguyen HT., Facile direct arylation polycondensation of random semiconducting terpolymers for single-junction non-fullerene organic solar cells. Synthetic Metals 2023; 296(117375): 1-9.
  • [2] Wei T., Gu T., Liang X., Xu H., Chayal G., Pandey SK., Sharma GD., D-A-D type small molecule donors based on BODIPY skeleton for bulk heterojunction organic solar cells. Journal of Photochemistry & Photobiology, A: Chemistry 2024; 446(115103): 1-11.
  • [3] Riede M., Spoltore D., Leo K., Organic solar cells—the path to commercial success. Advanced Energy Materials 2021; 11(2002653): 1-10.
  • [4] Alkhalayfeh MA., Aziz AA., Pakhuruddin MZ. An overview of enhanced polymer solar cells with embedded plasmonic nanoparticles. Renewable and Sustainable Energy Reviews 2021; 141(110726): 1-8.
  • [5] Seo JY., Akın S., Zalibera M., Preciado MAR., Kim HS., Zakeeruddin SM., Milic JV., Gratzel M., Dopant engineering for spiro-OMeTAD hole-transporting materials towards efficient perovskite solar cells. Advanced Functional Materials 2021; 31(2102124): 1-7.
  • [6] Ma YF., Zhang Y., Zhang HL., Solid additives in organic solar cells: progress and perspectives. Journal of Materials Chemistry C 2022; 10(7): 2364-2374.
  • [7] Kaçuş H., Aydoğan Ş., Biber M., Metin Ö., Sevim M., The power conversion efficiency optimization of the solar cells by doping of (Au:Ag) nanoparticles into P3HT:PCBM active layer prepared with chlorobenzene and chloroform solvents. Materials Research Express 2019; 6(095104): 1-11.
  • [8] Yao K., Zhong H., Liu Z., Xiong M., Leng S., Zhang J., Xu YX., Wang W., Zhou L., Huang H., Jen AKY., Plasmonic metal nanoparticles with core−bishell structure for high-performance organic and perovskite solar cells. ACS Nano 2019; 13(5): 5397-5409.
  • [9] Mutlu A., Can M., Tozlu C., Performance improvement of organic solar cell via incorporation of donor type self-assembled interfacial monolayer. Thin Solid Films 2019; 685: 88-96.
  • [10] Havare AK., Alsaeedi MS., Modifying transparent electrode with conjugated organic semiconductor hole transport material as interface for enhancing performance of organic solar cell. Journal of Saudi Chemical Society 2022; 26(101575): 1-8.
  • [11] Jadhav SA., Self-assembled monolayers (SAMs) of carboxylic acids: an overview. Central European Journal of Chemistry 2011; 9(3): 369-378.
  • [12] Arkan E., Yalçın E., Ünal M., Arkan MZY., Can M., Tozlu., Demiç Ş. Effect of functional groups of self assembled monolayer molecules on the performance of inverted perovskite solar cell. Materials Chemistry and Physics 2020; 254(123435): 1-11.
  • [13] Lin Y., Firdaus Y., Işıkgör FH., Nugraha MI., Yengel E., Harrison GT., Hallani R., El-Labban A., Faber H., Ma C., Zheng X., Subbiah A., Howells CT., Bakr OM., McCulloch I., Wolf SD., Tsetseris L., Anthopoulos TD., Self-assembled monolayer enables hole transport layer-free organic solar cells with 18% efficiency and improved operational stability. ACS Energy Letters 2020; 5(9): 2935-2944.
  • [14] Alghamdi ARM., Yanagida M., Shirai Y., Andersson GG., Miyano K. Surface passivation of sputtered NiOx using a SAM interface layer to enhance the performance of perovskite solar cells. ACS Omega 2022; 7(14): 12147-12157.
  • [15] Albonetti C., Oliveri G., Shehu A., Quiroga SD., Murgia M., Biscarini F. Unravelling molecular disorder at SAM-functionalized charge injection interfaces in organic field-effect transistors. Organic Electronics 2022; 100(106330): 1-13.
  • [16] Liu W., Lu H., Zhang Y., Huang H., Zheng X., Liu Y., Wu Y., Xu X., Enhancing the performance of organic solar cells by modification of cathode with a self-assembled monolayer of aromatic organophosphonic acid. Chinese Chemical Letters 2023; 34(107495): 1-5.
  • [17] Zhang S., Zhan L., Li S., Li CZ., Chen H., Enhanced performance of inverted non-fullerene organic solar cells through modifying zinc oxide surface with self-assembled monolayers. Organic Electronics 2018; 63: 143-148.
  • [18] Tozlu C., Mutlu A., Can M., Havare A.K., Demiç Ş., İçli S., Effect of TiO2 modification with amino-based self-assembled monolayer on inverted organic solar cell. Applied Surface Science 2017; 422: 1129-1138.
  • [19] Yoo SI., Do TT., Ha YE., Jo MY., Park J., Kang YC., Kimy H., Effect of self-assembled monolayer treated ZnO on the photovoltaic properties of inverted polymer solar cells. Bulletin of the Korean Chemical Society 2014; 35(2): 569-574.
  • [20] Kim W.H., Lyu H.K., Han Y.S., Woo S., Efficient inverted bulk-heterojunction polymer solar cells with self-assembled monolayer modified zinc oxide. Journal of Nanoscience and Nanotechnology 2013; 13: 7145-7148.
  • [21] Docampo P., Ball JM., Darwich M., Eperon GE., Snaith HJ., Efficient organometal trihalide perovskite planar-heterojunction solar cells on flexible polymer substrates. Nature Communications 2013; 4(2761): 1-6.
  • [22] Yurtdaş S., Can M., Karaman M., Tozlu C., Polimerik güneş hücrelerinde Ag nanopartikül katkılı TiO2 tampon tabakasının kendiliğinden organize olan tek tabaka moleküller (SAM) ile modifiye edilmesi. Düzce Üniversitesi Bilim ve Teknoloji Dergisi 2020; 8(1): 1058-1071.
There are 22 citations in total.

Details

Primary Language English
Subjects Energy, Solar Energy Systems, Renewable Energy Resources
Journal Section Research Article
Authors

Semih Yurtdaş 0000-0002-5556-2196

Publication Date September 25, 2025
Submission Date May 6, 2025
Acceptance Date August 8, 2025
Published in Issue Year 2025 Volume: 10 Issue: 3

Cite

APA Yurtdaş, S. (2025). Effects of MBA molecule modification on the efficiency of organic solar cells. International Journal of Energy Studies, 10(3), 983-993. https://doi.org/10.58559/ijes.1693074
AMA Yurtdaş S. Effects of MBA molecule modification on the efficiency of organic solar cells. Int J Energy Studies. September 2025;10(3):983-993. doi:10.58559/ijes.1693074
Chicago Yurtdaş, Semih. “Effects of MBA Molecule Modification on the Efficiency of Organic Solar Cells”. International Journal of Energy Studies 10, no. 3 (September 2025): 983-93. https://doi.org/10.58559/ijes.1693074.
EndNote Yurtdaş S (September 1, 2025) Effects of MBA molecule modification on the efficiency of organic solar cells. International Journal of Energy Studies 10 3 983–993.
IEEE S. Yurtdaş, “Effects of MBA molecule modification on the efficiency of organic solar cells”, Int J Energy Studies, vol. 10, no. 3, pp. 983–993, 2025, doi: 10.58559/ijes.1693074.
ISNAD Yurtdaş, Semih. “Effects of MBA Molecule Modification on the Efficiency of Organic Solar Cells”. International Journal of Energy Studies 10/3 (September2025), 983-993. https://doi.org/10.58559/ijes.1693074.
JAMA Yurtdaş S. Effects of MBA molecule modification on the efficiency of organic solar cells. Int J Energy Studies. 2025;10:983–993.
MLA Yurtdaş, Semih. “Effects of MBA Molecule Modification on the Efficiency of Organic Solar Cells”. International Journal of Energy Studies, vol. 10, no. 3, 2025, pp. 983-9, doi:10.58559/ijes.1693074.
Vancouver Yurtdaş S. Effects of MBA molecule modification on the efficiency of organic solar cells. Int J Energy Studies. 2025;10(3):983-9.