Research Article
BibTex RIS Cite

Dört Farklı Atık Biyokütlenin Ticari Bir Karşılığıyla Deneysel ve Teorik Yakıt Özelliğinin Karşılaştırılması

Year 2025, Volume: 10 Issue: 3, 677 - 698, 25.09.2025
https://doi.org/10.58559/ijes.1703716

Abstract

References

  • [1] Sultana A, Kumar A, Harfield D. Development of agri-pellet production cost and optimum size. Bioresour Technol 2010; 101(14): 5609-5621.
  • [2] Fusi A, Bacenetti J, Proto AR, Tedesco DE, Pessina D, Facchinetti D. Pellet production from Miscanthus: Energy and environmental assessment. Energies 2021; 14(1): 73.
  • [3] Lisý M, Lisá H, Jecha D, Baláš M, Križan P. Characteristic properties of alternative biomass fuels. Energies 2021; 13(6): 1448.
  • [4] Ríos-Badrán IM, Luzardo-Ocampo I, García-Trejo JF, Santos-Cruz J, Gutiérrez-Antonio C. Production and characterization of fuel pellets from rice husk and wheat straw. Renew Energy 2020; 145: 500-507.
  • [5] Höök M, Tang X. Depletion of fossil fuels and anthropogenic climate change: A review. Energy Policy 2013; 52: 797-809.
  • [6] Jiang X, Guan D. Determinants of global CO2 emissions growth. Appl Energy 2016; 184: 1132-1141.
  • [7] Raupach MR, Marland G, Ciais P, Le Quéré C, Canadell JG, Klepper G, Field CB. Global and regional drivers of accelerating CO2 emissions. Proc Natl Acad Sci USA 2007; 104(24): 10288-10293.
  • [8] Anselmo Filho P, Badr O. Biomass resources for energy in North-Eastern Brazil. Appl Energy 2004; 77(1): 51-67.
  • [9] Dhillon RS, von Wuehlisch G. Mitigation of global warming through renewable biomass. Biomass Bioenergy 2013; 48: 75-89.
  • [10] Benoist A, Dron D, Zoughaib A. Origins of the debate on the life-cycle greenhouse gas emissions and energy consumption of first-generation biofuels: A sensitivity analysis approach. Biomass Bioenergy 2012; 40: 133-142.
  • [11] Lyytimäki J. Renewable energy in the news: Environmental, economic, policy and technology discussion of biogas. Sustain Prod Consum 2018; 15: 65-73.
  • [12] Negri M, Bacenetti J, Manfredini A, Lovarelli D, Fiala M, Maggiore TM, Bocchi S. Evaluation of methane production from maize silage by harvest of different plant portions. Biomass Bioenergy 2014; 67: 339-346.
  • [13] Setter C, Borges FA, Cardoso CR, Mendes RF, Oliveira TJP. Energy quality of pellets produced from coffee residue: Characterization of the products obtained via slow pyrolysis. Ind Crops Prod 2020; 154: 112731.
  • [14] Atay OA, Ekinci K. Characterization of pellets made from rose oil processing solid wastes/coal powder/pine bark. Renew Energy 2020; 149: 933-939.
  • [15] Kumar A, Cameron JB, Flynn PC. Biomass power cost and optimum plant size in western Canada. Biomass Bioenergy 2003; 24(6): 445-464.
  • [16] Nizamuddin S, Mubarak NM, Tiripathi M, Jayakumar NS, Sahu JN, Ganesan P. Chemical, dielectric and structural characterization of optimized hydrochar produced from hydrothermal carbonization of palm shell. Fuel 2016; 163: 88-97.
  • [17] Toscano G, Riva G, Pedretti EF, Corinaldesi F, Mengarelli C, Duca D. Investigation on wood pellet quality and relationship between ash content and the most important chemical elements. Biomass Bioenergy 2013; 56: 317-322.
  • [18] Wang Z, Zhai Y, Wang T, Wang B, Peng C, Li C. Pelletizing of hydrochar biofuels with organic binders. Fuel 2020; 280: 118659.
  • [19] Verma VK, Bram S, De Ruyck J. Small scale biomass heating systems: Standards, quality labelling and market driving factors – An EU outlook. Biomass Bioenergy 2009; 33(10): 1393-1402.
  • [20] Kaliyan N, Morey RV. Factors affecting strength and durability of densified biomass products. Biomass Bioenergy 2009; 33(3): 337-359.
  • [21] Nunes LJR, Matias JCO, Catalão JPS. Mixed biomass pellets for thermal energy production: A review of combustion models. Appl Energy 2014; 127: 135-140.
  • [22] Sánchez J, Curt MD, Sanz M, Fernández J. A proposal for pellet production from residual woody biomass in the island of Majorca (Spain). AIMS Energy 2015; 3(3): 480-504.
  • [23] Whittaker C, Shield I. Factors affecting wood, energy grass and straw pellet durability: A review. Renew Sustain Energy Rev 2017; 71: 1-11.
  • [24] Obernberger I, Thek G. The pellet handbook: The production and thermal utilisation of pellets. Routledge, 2010.
  • [25] Larsson SH, Agar DA, Rudolfsson M, da Silva Perez D, Campargue M, Kalén G, Thyrel M. Using the macromolecular composition to predict process settings that give high pellet durability in ring-die biomass pellet production. Fuel 2021; 283: 119267.
  • [26] Calderón C, Gauthier G, Jossart JM. Bioenergy Europe Statistical Report 2019 – Key Findings. European Association Bioenergy Europe, Brussels, Belgium, 2019.
  • [27] Picchio R, Latterini F, Venanzi R, Stefanoni W, Suardi A, Tocci D, Pari L. Pellet production from woody and non-woody feedstocks: A review on biomass quality evaluation. Energies 2020; 13(11): 2937.
  • [28] Samuelsson R, Thyrel M, Sjöström M, Lestander TA. Effect of biomaterial characteristics on pelletizing properties and biofuel pellet quality. Fuel Process Technol 2009; 90(9): 1129-1134.
  • [29] Larsson SH, Thyrel M, Geladi P, Lestander TA. High quality biofuel pellet production from pre-compacted low density raw materials. Bioresour Technol 2008; 99(15): 7176-7182.
  • [30] Hoefnagels R, Junginger M, Faaij A. The economic potential of wood pellet production from alternative, low-value wood sources in the southeast of the US. Biomass Bioenergy 2014; 71: 443-454.
  • [31] Vorotinskienė L, Paulauskas R, Zakarauskas K, Navakas R, Skvorčinskienė R, Striūgas N. Parameters influencing wet biofuel drying during combustion in grate furnaces. Fuel 2020; 265: 117013.
  • [32] Pavi S, Kramer LE, Gomes LP, Miranda LAS. Biogas production from co-digestion of organic fraction of municipal solid waste and fruit and vegetable waste. Bioresour Technol 2017; 228: 362-367.
  • [33] Hoornweg D, Bhada-Tata P. What a waste: A global review of solid waste management. World Bank, Washington, DC, 2012.
  • [34] Zawiślak K, Sobczak P, Kraszkiewicz A, Niedziółka I, Parafiniuk S, Kuna-Broniowska I, Obidziński S. The use of lignocellulosic waste in the production of pellets for energy purposes. Renew Energy 2020; 145: 997-1003.
  • [35] Chen H, Forbes EGA, Archer J, De Priall O, Allen M, Johnston C, Rooney D. Production and characterization of granules from agricultural wastes and comparison of combustion and emission results with wood-based fuels. Fuel 2019; 256: 115897.
  • [36] Chojnacki J, Zdanowicz A, Ondruška J, Šooš Ľ, Smuga-Kogut M. The influence of apple, carrot and red beet pomace content on the properties of pellet from barley straw. Energies 2021; 14(2): 405.
  • [37] Hudakorn T, Sritrakul N. Biogas and biomass pellet production from water hyacinth. Energy Rep 2020; 6: 532-538.
  • [38] Polprasert C. Organic waste recycling: Technology and management. IWA Publishing, 2007.
  • [39] Purohit P, Chaturvedi V. Biomass pellets for power generation in India: A techno-economic evaluation. Environ Sci Pollut Res 2018; 25(29): 29614-29632.
  • [40] Yun H, Clift R, Bi X. Environmental and economic assessment of torrefied wood pellets from British Columbia. Energy Convers Manage 2020; 208: 112513.
  • [41] Behnke KC. Factors affecting pellet quality. Maryland Nutrition Conf, Dept Poultry Sci Anim Sci, Univ Maryland, College of Agricultural, 1994.
  • [42] Turner R. Bottomline in feed processing: Achieving optimum pellet quality. Feed Manag 1995; 46(12): 30-33.
  • [43] Thomas M, Van Zuilichem DJ, Van der Poel AFB. Physical quality of pelleted animal feed. 2. Contribution of processes and its conditions. Anim Feed Sci Technol 1997; 64(2-4): 173-192.
  • [44] Moliner C, Lagazzo A, Bosio B, Botter R, Arato E. Production, characterization, and evaluation of pellets from rice harvest residues. Energies 2020; 13(2): 479.
  • [45] Parikh J, Channiwala SA, Ghosal GK. A correlation for calculating HHV from proximate analysis of solid fuels. Fuel 2005; 84(5): 487-494.
  • [46] Igathinathane C, Tumuluru JS, Sokhansanj S, Bi X, Lim CJ, Melin S, Mohammad E. Simple and inexpensive method of wood pellets macro-porosity measurement. Bioresour Technol 2010; 101(16): 6528-6537.
  • [47] Matúš M, Križan P, Šooš Ľ, Beniak J. The effect of papermaking sludge as an additive to biomass pellets on the final quality of the fuel. Fuel 2018; 219: 196-204.
  • [48] ISO. Solid biofuels – Fuel specifications and classes – Part 1: General requirements. ISO, 2014.
  • [49] Acda MN. Physico-chemical properties of wood pellets from coppice of short rotation tropical hardwoods. Fuel 2015; 160: 531-533.
  • [50] Uasuf A, Becker G. Wood pellets production costs and energy consumption under different framework conditions in Northeast Argentina. Biomass Bioenergy 2011; 35(3): 1357-1366.
  • [51] Telmo C, Lousada J, Moreira N. Proximate analysis, backwards stepwise regression between gross calorific value, ultimate and chemical analysis of wood. Bioresour Technol 2010; 101(11): 3808-3815.
  • [52] Vassilev SV, Baxter D, Andersen LK, Vassileva CG, Morgan TJ. An overview of the organic and inorganic phase composition of biomass. Fuel 2012; 94: 1-33.
  • [53] Baxter LL. Ash deposition during biomass and coal combustion: A mechanistic approach. Biomass Bioenergy 1993; 4(2): 85-102.
  • [54] Lynch D, Henihan AM, Bowen B, Lynch D, McDonnell K, Kwapinski W, Leahy JJ. Utilisation of poultry litter as an energy feedstock. Biomass Bioenergy 2013; 49: 197-204.
  • [55] Fiedler F. The state of the art of small-scale pellet-based heating systems and relevant regulations in Sweden, Austria and Germany. Renew Sustain Energy Rev 2004; 8(3): 201-221.
  • [56] Sungur B, Topaloğlu B, Özbey M. Pelet yakıtlı yakma sistemlerinin ısıl performans ve emisyon açısından incelenmesi. Mühendis Makina 2018; 59(693): 64-84.
  • [57] Price-Allison A, Lea-Langton AR, Mitchell EJS, Gudka B, Jones JM, Mason PE, Williams A. Emissions performance of high moisture wood fuels burned in a residential stove. Fuel 2019; 239: 1038-1045.
  • [58] Vassilev SV, Vassileva CG, Vassilev VS. Advantages and disadvantages of composition and properties of biomass in comparison with coal: An overview. Fuel 2015; 158: 330-350.
  • [59] Demirbas A. Potential applications of renewable energy sources, biomass combustion problems in boiler power systems and combustion related environmental issues. Prog Energy Combust Sci 2005; 31(2): 171-192.
  • [60] Bilandzija N. Energy potential of fruit tree pruned biomass in Croatia. Span J Agric Res 2012; 10(2): 292-298.
  • [61] Huber GW, Iborra S, Corma A. Synthesis of transportation fuels from biomass: Chemistry, catalysts, and engineering. Chem Rev 2006; 106(9): 4044-4098.
  • [62] Vassilev SV, Baxter D, Andersen LK, Vassileva CG. An overview of the chemical composition of biomass. Fuel 2010; 89(5): 913-933.
  • [63] Senelwa K, Sims RE. Fuel characteristics of short rotation forest biomass. Biomass Bioenergy 1999; 17(2): 127-140.
  • [64] Aho M, Gil A, Taipale R, Vainikka P, Vesala H. A pilot-scale fireside deposit study of co-firing Cynara with two coals in a fluidised bed. Fuel 2008; 87(1): 58-69.
  • [65] Obernberger I, Brunner T, Bärnthaler G. Chemical properties of solid biofuels: Significance and impact. Biomass Bioenergy 2006; 30(11): 973-982.
  • [66] Obernberger I, Biedermann F, Widmann W, Riedl R. Concentrations of inorganic elements in biomass fuels and recovery in the different ash fractions. Biomass Bioenergy 1997; 12(3): 211-224.
  • [67] McKendry P. Energy production from biomass (part 3): Gasification technologies. Bioresour Technol 2002; 83(1): 55-63.
  • [68] Arshadi M, Gref R, Geladi P, Dahlqvist SA, Lestander T. The influence of raw material characteristics on the industrial pelletizing process and pellet quality. Fuel Process Technol 2008; 89(12): 1442-1447.
  • [69] Wichianphong N, Maison W. Preparation of biofuel pellets from water hyacinth and waste coffee grounds. Rmutsb Acad J 2020; 8(2): 140-152.
  • [70] Han Y, Tahmasebi A, Yu J, Li X, Meesri C. An experimental study on binderless briquetting of low-rank coals. Chem Eng Technol 2013; 36(5): 749-756.
  • [71] Arulprakasajothi M, Beemkumar N, Parthipan J, Battu NR. Investigating the physio-chemical properties of densified biomass pellet fuels from fruit and vegetable market waste. Arab J Sci Eng 2020; 45(2): 563-574.

Experimental and theoretical fuel property comparison of four different waste biomass with a commercial counterpart

Year 2025, Volume: 10 Issue: 3, 677 - 698, 25.09.2025
https://doi.org/10.58559/ijes.1703716

Abstract

The study focused on determining the fuel properties of apple pulp, pomegranate seeds, pomegranate peel and orange peel wastes to convert them into pellet fuel. The organic wastes were crushed and pressed into pellets, and solid fuel characterization process was conducted to analyze moisture content, ash content, volatile matter determination, fixed carbon content, total sulfur content, hydrogen content, lower heating value and higher heating values. The experimental analysis showed that the dry pomegranate seed pellet had 4244 kcal/kg, which was lower than the commercial pellet with 4759 kcal/kg calorific value under the same conditions. The moisture content of the commercial pellet and pomegranate seed samples were also different, with the commercial pellet having a higher moisture content at 5.42% compared to pomegranate seed samples at 1.83%. With low moisture content, production costs can be reduced and processing time can be shortened, making it easier to process low moisture samples than dry ones. Using organic wastes in the combustion process is also promising from an environmental and economic perspective.

References

  • [1] Sultana A, Kumar A, Harfield D. Development of agri-pellet production cost and optimum size. Bioresour Technol 2010; 101(14): 5609-5621.
  • [2] Fusi A, Bacenetti J, Proto AR, Tedesco DE, Pessina D, Facchinetti D. Pellet production from Miscanthus: Energy and environmental assessment. Energies 2021; 14(1): 73.
  • [3] Lisý M, Lisá H, Jecha D, Baláš M, Križan P. Characteristic properties of alternative biomass fuels. Energies 2021; 13(6): 1448.
  • [4] Ríos-Badrán IM, Luzardo-Ocampo I, García-Trejo JF, Santos-Cruz J, Gutiérrez-Antonio C. Production and characterization of fuel pellets from rice husk and wheat straw. Renew Energy 2020; 145: 500-507.
  • [5] Höök M, Tang X. Depletion of fossil fuels and anthropogenic climate change: A review. Energy Policy 2013; 52: 797-809.
  • [6] Jiang X, Guan D. Determinants of global CO2 emissions growth. Appl Energy 2016; 184: 1132-1141.
  • [7] Raupach MR, Marland G, Ciais P, Le Quéré C, Canadell JG, Klepper G, Field CB. Global and regional drivers of accelerating CO2 emissions. Proc Natl Acad Sci USA 2007; 104(24): 10288-10293.
  • [8] Anselmo Filho P, Badr O. Biomass resources for energy in North-Eastern Brazil. Appl Energy 2004; 77(1): 51-67.
  • [9] Dhillon RS, von Wuehlisch G. Mitigation of global warming through renewable biomass. Biomass Bioenergy 2013; 48: 75-89.
  • [10] Benoist A, Dron D, Zoughaib A. Origins of the debate on the life-cycle greenhouse gas emissions and energy consumption of first-generation biofuels: A sensitivity analysis approach. Biomass Bioenergy 2012; 40: 133-142.
  • [11] Lyytimäki J. Renewable energy in the news: Environmental, economic, policy and technology discussion of biogas. Sustain Prod Consum 2018; 15: 65-73.
  • [12] Negri M, Bacenetti J, Manfredini A, Lovarelli D, Fiala M, Maggiore TM, Bocchi S. Evaluation of methane production from maize silage by harvest of different plant portions. Biomass Bioenergy 2014; 67: 339-346.
  • [13] Setter C, Borges FA, Cardoso CR, Mendes RF, Oliveira TJP. Energy quality of pellets produced from coffee residue: Characterization of the products obtained via slow pyrolysis. Ind Crops Prod 2020; 154: 112731.
  • [14] Atay OA, Ekinci K. Characterization of pellets made from rose oil processing solid wastes/coal powder/pine bark. Renew Energy 2020; 149: 933-939.
  • [15] Kumar A, Cameron JB, Flynn PC. Biomass power cost and optimum plant size in western Canada. Biomass Bioenergy 2003; 24(6): 445-464.
  • [16] Nizamuddin S, Mubarak NM, Tiripathi M, Jayakumar NS, Sahu JN, Ganesan P. Chemical, dielectric and structural characterization of optimized hydrochar produced from hydrothermal carbonization of palm shell. Fuel 2016; 163: 88-97.
  • [17] Toscano G, Riva G, Pedretti EF, Corinaldesi F, Mengarelli C, Duca D. Investigation on wood pellet quality and relationship between ash content and the most important chemical elements. Biomass Bioenergy 2013; 56: 317-322.
  • [18] Wang Z, Zhai Y, Wang T, Wang B, Peng C, Li C. Pelletizing of hydrochar biofuels with organic binders. Fuel 2020; 280: 118659.
  • [19] Verma VK, Bram S, De Ruyck J. Small scale biomass heating systems: Standards, quality labelling and market driving factors – An EU outlook. Biomass Bioenergy 2009; 33(10): 1393-1402.
  • [20] Kaliyan N, Morey RV. Factors affecting strength and durability of densified biomass products. Biomass Bioenergy 2009; 33(3): 337-359.
  • [21] Nunes LJR, Matias JCO, Catalão JPS. Mixed biomass pellets for thermal energy production: A review of combustion models. Appl Energy 2014; 127: 135-140.
  • [22] Sánchez J, Curt MD, Sanz M, Fernández J. A proposal for pellet production from residual woody biomass in the island of Majorca (Spain). AIMS Energy 2015; 3(3): 480-504.
  • [23] Whittaker C, Shield I. Factors affecting wood, energy grass and straw pellet durability: A review. Renew Sustain Energy Rev 2017; 71: 1-11.
  • [24] Obernberger I, Thek G. The pellet handbook: The production and thermal utilisation of pellets. Routledge, 2010.
  • [25] Larsson SH, Agar DA, Rudolfsson M, da Silva Perez D, Campargue M, Kalén G, Thyrel M. Using the macromolecular composition to predict process settings that give high pellet durability in ring-die biomass pellet production. Fuel 2021; 283: 119267.
  • [26] Calderón C, Gauthier G, Jossart JM. Bioenergy Europe Statistical Report 2019 – Key Findings. European Association Bioenergy Europe, Brussels, Belgium, 2019.
  • [27] Picchio R, Latterini F, Venanzi R, Stefanoni W, Suardi A, Tocci D, Pari L. Pellet production from woody and non-woody feedstocks: A review on biomass quality evaluation. Energies 2020; 13(11): 2937.
  • [28] Samuelsson R, Thyrel M, Sjöström M, Lestander TA. Effect of biomaterial characteristics on pelletizing properties and biofuel pellet quality. Fuel Process Technol 2009; 90(9): 1129-1134.
  • [29] Larsson SH, Thyrel M, Geladi P, Lestander TA. High quality biofuel pellet production from pre-compacted low density raw materials. Bioresour Technol 2008; 99(15): 7176-7182.
  • [30] Hoefnagels R, Junginger M, Faaij A. The economic potential of wood pellet production from alternative, low-value wood sources in the southeast of the US. Biomass Bioenergy 2014; 71: 443-454.
  • [31] Vorotinskienė L, Paulauskas R, Zakarauskas K, Navakas R, Skvorčinskienė R, Striūgas N. Parameters influencing wet biofuel drying during combustion in grate furnaces. Fuel 2020; 265: 117013.
  • [32] Pavi S, Kramer LE, Gomes LP, Miranda LAS. Biogas production from co-digestion of organic fraction of municipal solid waste and fruit and vegetable waste. Bioresour Technol 2017; 228: 362-367.
  • [33] Hoornweg D, Bhada-Tata P. What a waste: A global review of solid waste management. World Bank, Washington, DC, 2012.
  • [34] Zawiślak K, Sobczak P, Kraszkiewicz A, Niedziółka I, Parafiniuk S, Kuna-Broniowska I, Obidziński S. The use of lignocellulosic waste in the production of pellets for energy purposes. Renew Energy 2020; 145: 997-1003.
  • [35] Chen H, Forbes EGA, Archer J, De Priall O, Allen M, Johnston C, Rooney D. Production and characterization of granules from agricultural wastes and comparison of combustion and emission results with wood-based fuels. Fuel 2019; 256: 115897.
  • [36] Chojnacki J, Zdanowicz A, Ondruška J, Šooš Ľ, Smuga-Kogut M. The influence of apple, carrot and red beet pomace content on the properties of pellet from barley straw. Energies 2021; 14(2): 405.
  • [37] Hudakorn T, Sritrakul N. Biogas and biomass pellet production from water hyacinth. Energy Rep 2020; 6: 532-538.
  • [38] Polprasert C. Organic waste recycling: Technology and management. IWA Publishing, 2007.
  • [39] Purohit P, Chaturvedi V. Biomass pellets for power generation in India: A techno-economic evaluation. Environ Sci Pollut Res 2018; 25(29): 29614-29632.
  • [40] Yun H, Clift R, Bi X. Environmental and economic assessment of torrefied wood pellets from British Columbia. Energy Convers Manage 2020; 208: 112513.
  • [41] Behnke KC. Factors affecting pellet quality. Maryland Nutrition Conf, Dept Poultry Sci Anim Sci, Univ Maryland, College of Agricultural, 1994.
  • [42] Turner R. Bottomline in feed processing: Achieving optimum pellet quality. Feed Manag 1995; 46(12): 30-33.
  • [43] Thomas M, Van Zuilichem DJ, Van der Poel AFB. Physical quality of pelleted animal feed. 2. Contribution of processes and its conditions. Anim Feed Sci Technol 1997; 64(2-4): 173-192.
  • [44] Moliner C, Lagazzo A, Bosio B, Botter R, Arato E. Production, characterization, and evaluation of pellets from rice harvest residues. Energies 2020; 13(2): 479.
  • [45] Parikh J, Channiwala SA, Ghosal GK. A correlation for calculating HHV from proximate analysis of solid fuels. Fuel 2005; 84(5): 487-494.
  • [46] Igathinathane C, Tumuluru JS, Sokhansanj S, Bi X, Lim CJ, Melin S, Mohammad E. Simple and inexpensive method of wood pellets macro-porosity measurement. Bioresour Technol 2010; 101(16): 6528-6537.
  • [47] Matúš M, Križan P, Šooš Ľ, Beniak J. The effect of papermaking sludge as an additive to biomass pellets on the final quality of the fuel. Fuel 2018; 219: 196-204.
  • [48] ISO. Solid biofuels – Fuel specifications and classes – Part 1: General requirements. ISO, 2014.
  • [49] Acda MN. Physico-chemical properties of wood pellets from coppice of short rotation tropical hardwoods. Fuel 2015; 160: 531-533.
  • [50] Uasuf A, Becker G. Wood pellets production costs and energy consumption under different framework conditions in Northeast Argentina. Biomass Bioenergy 2011; 35(3): 1357-1366.
  • [51] Telmo C, Lousada J, Moreira N. Proximate analysis, backwards stepwise regression between gross calorific value, ultimate and chemical analysis of wood. Bioresour Technol 2010; 101(11): 3808-3815.
  • [52] Vassilev SV, Baxter D, Andersen LK, Vassileva CG, Morgan TJ. An overview of the organic and inorganic phase composition of biomass. Fuel 2012; 94: 1-33.
  • [53] Baxter LL. Ash deposition during biomass and coal combustion: A mechanistic approach. Biomass Bioenergy 1993; 4(2): 85-102.
  • [54] Lynch D, Henihan AM, Bowen B, Lynch D, McDonnell K, Kwapinski W, Leahy JJ. Utilisation of poultry litter as an energy feedstock. Biomass Bioenergy 2013; 49: 197-204.
  • [55] Fiedler F. The state of the art of small-scale pellet-based heating systems and relevant regulations in Sweden, Austria and Germany. Renew Sustain Energy Rev 2004; 8(3): 201-221.
  • [56] Sungur B, Topaloğlu B, Özbey M. Pelet yakıtlı yakma sistemlerinin ısıl performans ve emisyon açısından incelenmesi. Mühendis Makina 2018; 59(693): 64-84.
  • [57] Price-Allison A, Lea-Langton AR, Mitchell EJS, Gudka B, Jones JM, Mason PE, Williams A. Emissions performance of high moisture wood fuels burned in a residential stove. Fuel 2019; 239: 1038-1045.
  • [58] Vassilev SV, Vassileva CG, Vassilev VS. Advantages and disadvantages of composition and properties of biomass in comparison with coal: An overview. Fuel 2015; 158: 330-350.
  • [59] Demirbas A. Potential applications of renewable energy sources, biomass combustion problems in boiler power systems and combustion related environmental issues. Prog Energy Combust Sci 2005; 31(2): 171-192.
  • [60] Bilandzija N. Energy potential of fruit tree pruned biomass in Croatia. Span J Agric Res 2012; 10(2): 292-298.
  • [61] Huber GW, Iborra S, Corma A. Synthesis of transportation fuels from biomass: Chemistry, catalysts, and engineering. Chem Rev 2006; 106(9): 4044-4098.
  • [62] Vassilev SV, Baxter D, Andersen LK, Vassileva CG. An overview of the chemical composition of biomass. Fuel 2010; 89(5): 913-933.
  • [63] Senelwa K, Sims RE. Fuel characteristics of short rotation forest biomass. Biomass Bioenergy 1999; 17(2): 127-140.
  • [64] Aho M, Gil A, Taipale R, Vainikka P, Vesala H. A pilot-scale fireside deposit study of co-firing Cynara with two coals in a fluidised bed. Fuel 2008; 87(1): 58-69.
  • [65] Obernberger I, Brunner T, Bärnthaler G. Chemical properties of solid biofuels: Significance and impact. Biomass Bioenergy 2006; 30(11): 973-982.
  • [66] Obernberger I, Biedermann F, Widmann W, Riedl R. Concentrations of inorganic elements in biomass fuels and recovery in the different ash fractions. Biomass Bioenergy 1997; 12(3): 211-224.
  • [67] McKendry P. Energy production from biomass (part 3): Gasification technologies. Bioresour Technol 2002; 83(1): 55-63.
  • [68] Arshadi M, Gref R, Geladi P, Dahlqvist SA, Lestander T. The influence of raw material characteristics on the industrial pelletizing process and pellet quality. Fuel Process Technol 2008; 89(12): 1442-1447.
  • [69] Wichianphong N, Maison W. Preparation of biofuel pellets from water hyacinth and waste coffee grounds. Rmutsb Acad J 2020; 8(2): 140-152.
  • [70] Han Y, Tahmasebi A, Yu J, Li X, Meesri C. An experimental study on binderless briquetting of low-rank coals. Chem Eng Technol 2013; 36(5): 749-756.
  • [71] Arulprakasajothi M, Beemkumar N, Parthipan J, Battu NR. Investigating the physio-chemical properties of densified biomass pellet fuels from fruit and vegetable market waste. Arab J Sci Eng 2020; 45(2): 563-574.
There are 71 citations in total.

Details

Primary Language English
Subjects Biomass Energy Systems
Journal Section Research Article
Authors

Kaan Baltacıoğlu 0000-0002-4082-902X

Mustafa Tunahan Başar 0000-0002-3108-8995

Hüseyin Turan Arat 0000-0002-9269-4075

Yasin Erdogan 0000-0001-6862-9671

Publication Date September 25, 2025
Submission Date May 21, 2025
Acceptance Date June 27, 2025
Published in Issue Year 2025 Volume: 10 Issue: 3

Cite

APA Baltacıoğlu, K., Başar, M. T., Arat, H. T., Erdogan, Y. (2025). Experimental and theoretical fuel property comparison of four different waste biomass with a commercial counterpart. International Journal of Energy Studies, 10(3), 677-698. https://doi.org/10.58559/ijes.1703716
AMA Baltacıoğlu K, Başar MT, Arat HT, Erdogan Y. Experimental and theoretical fuel property comparison of four different waste biomass with a commercial counterpart. Int J Energy Studies. September 2025;10(3):677-698. doi:10.58559/ijes.1703716
Chicago Baltacıoğlu, Kaan, Mustafa Tunahan Başar, Hüseyin Turan Arat, and Yasin Erdogan. “Experimental and Theoretical Fuel Property Comparison of Four Different Waste Biomass With a Commercial Counterpart”. International Journal of Energy Studies 10, no. 3 (September 2025): 677-98. https://doi.org/10.58559/ijes.1703716.
EndNote Baltacıoğlu K, Başar MT, Arat HT, Erdogan Y (September 1, 2025) Experimental and theoretical fuel property comparison of four different waste biomass with a commercial counterpart. International Journal of Energy Studies 10 3 677–698.
IEEE K. Baltacıoğlu, M. T. Başar, H. T. Arat, and Y. Erdogan, “Experimental and theoretical fuel property comparison of four different waste biomass with a commercial counterpart”, Int J Energy Studies, vol. 10, no. 3, pp. 677–698, 2025, doi: 10.58559/ijes.1703716.
ISNAD Baltacıoğlu, Kaan et al. “Experimental and Theoretical Fuel Property Comparison of Four Different Waste Biomass With a Commercial Counterpart”. International Journal of Energy Studies 10/3 (September2025), 677-698. https://doi.org/10.58559/ijes.1703716.
JAMA Baltacıoğlu K, Başar MT, Arat HT, Erdogan Y. Experimental and theoretical fuel property comparison of four different waste biomass with a commercial counterpart. Int J Energy Studies. 2025;10:677–698.
MLA Baltacıoğlu, Kaan et al. “Experimental and Theoretical Fuel Property Comparison of Four Different Waste Biomass With a Commercial Counterpart”. International Journal of Energy Studies, vol. 10, no. 3, 2025, pp. 677-98, doi:10.58559/ijes.1703716.
Vancouver Baltacıoğlu K, Başar MT, Arat HT, Erdogan Y. Experimental and theoretical fuel property comparison of four different waste biomass with a commercial counterpart. Int J Energy Studies. 2025;10(3):677-98.