Research Article
BibTex RIS Cite

Tailoring hydrogen storage properties of MWCNTs via h-BN nanoparticle incorporation

Year 2025, Volume: 10 Issue: 3, 1181 - 1192, 25.09.2025
https://doi.org/10.58559/ijes.1747006

Abstract

The hydrogen absorption capacity of pristine multiwalled carbon nanotubes (MWCNTs) and hexagonal boron nitride (h-BN) nanoparticle-doped MWCNTs (h-BN/MWCNTs) were investigated at 73K under pressures ranging from 5 to 50 bar. The MWCNTs were purified using H₂SO₄/HNO₃ as oxidizing agents, after which h-BN nanoparticles were successfully incorporated onto the purified MWCNTs via a wet chemical method.
The structural and morphological characteristics of the synthesized h-BN/MWCNTs were analyzed using X-ray diffraction (XRD), energy-dispersive X-ray spectroscopy (EDX), transmission electron microscopy (TEM), and scanning electron microscopy (SEM). Hydrogen adsorption measurements for both purified MWCNTs and h-BN/MWCNTs were carried out using Sievert’s apparatus. The results demonstrated that the h-BN/MWCNTs exhibited a hydrogen uptake capacity ranging from 0.77 wt% at 5 bar and 73K to a maximum of 2.01 wt%, highlighting the effectiveness of h-BN incorporation in enhancing hydrogen storage performance.

References

  • [1] Barbir F, Veziroglu TN. Hydrogen–The Wonder Fuel. Int. J. Hydrogen Energy 1992; 17(6):391-404.
  • [2] Zhou L. Progress and problems in hydrogen storage methods. Renewable and Sustainable Energy Reviews 2005; 9(4): 395-408.
  • [3] Chalk SG, Miller JF. Key challenges and recent progress in batteries, fuel cells, and hydrogen storage for clean energy systems. Journal of Power Sources 2006;159(1): 73-80.
  • [4] Niaz S, Manzoor T, Pandith AH. Hydrogen storage: Materials, methods and perspectives. Renewable and Sustainable Energy Reviews 2015; 50: 457-469.
  • [5] Wilder JW, Venema LC, Rinzler, AG, Smalley RE, Dekker, C. Electronic structure of atomically resolved carbon nanotubes. Nature 1998; 391: 59-62.
  • [6] Dillon A, Jones KM, Bekkedahl TA, Kiang CH, Bethune DS, Heben MJ. Storage of hydrogen in single-walled carbon nanotubes. Nature, 1997;386: 377-389.
  • [7] Ye Y, Ahn CC, Witham C, Fultz B, Liu J, Rinzler AG, Smalley RE. Hydrogen adsorption and cohesive energy of single-walled carbon nanotubes. Applied Physics Letters 1999; 74(16): 2307-2309.
  • [8] Liu C, Fan YY, Liu M, Cong HT, Cheng HM, Dresselhaus MS. Hydrogen storage in single-walled carbon nanotubes at room temperature. Science, 1999;286(5442): 1127-1129.
  • [9] Yang RT. Hydrogen storage by alkali-doped carbon nanotubes–revisited. Carbon, 2000; 38(4): 623-626.
  • [10] Pyle DS, Gray EM, Webb CJ. Hydrogen storage in carbon nanostructures via spillover. Int. J. Hydrogen Energy 2016; 41(42): 19098-19113.
  • [11] Lueking AD, Yang RT. Hydrogen spillover to enhance hydrogen storage study of the effect of carbon physicochemical properties. App. Cat. A: General 2004; 265(2): 259-268.
  • [12] Zacharia R, Kim KY, Kibria AF, Nahm KS. Enhancement of hydrogen storage capacity of carbon nanotubes via spill-over from vanadium and palladium nanoparticles. Chemical Physics Letters 2005; 412(4-6): 369-375.
  • [13] Chen X, Zhang Y, Gao XP, Pan GL, Jiang XY, Qu JQ, Song DY. Electrochemical hydrogen storage of carbon nanotubes and carbon nanofibers. International Journal of Hydrogen Energy 2004; 29(7): 743-748.
  • [14] Prins R. Hydrogen spillover. Facts and fiction. Chemical reviews, 2012; 112(5): 2714-2738.
  • [15] Rungnim C, Faungnawakij K, Sano N, Kungwan N, Namuangruk S. Hydrogen storage performance of platinum supported carbon nanohorns: A DFT study of reaction mechanisms, thermodynamics, and kinetics. Int. J. Hydrogen Energy 2018; 43(52): 23336-23345.
  • [16] Wang L, Yang RT. New sorbents for hydrogen storage by hydrogen spillover–a review. Energy & Environmental Science 2008; 1(2): 268-279.
  • [17] Blase X, Rubio A, Louie SG, Cohen ML. Stability and band gap constancy of boron nitride nanotubes. EPL (Europhysics Letters) 1994; 28(5): 335.
  • [18] Zhi C, Bando Y, Terao T, Tang C, Kuwahara H, Golberg D. Towards thermoconductive, electrically insulating polymeric composites with boron nitride nanotubes as fillers. Advanced Functional Materials 2009; 19(12): 1857-1862.
  • [19] Wang R, Zhu R, Zhang D. Adsorption of formaldehyde molecule on the pristine and silicon-doped boron nitride nanotubes. Chemical Physics Letters 2008;467(1-3): 131-135.
  • [20] Sankaran M, Viswanathan B, Murthy SS. Boron substituted carbon nanotubes-How appropriate are they for hydrogen storage, Int. J. Hydrogen Energy 2008; 33(1): 393-403.
  • [21] Ma R, Bando Y, Zhu H, Sato T, Xu C, Wu D. Hydrogen uptake in boron nitride nanotubes at room temperature. Journal of the American Chemical Society 2002; 124(26): 7672-7673.
  • [22] Sakr MAS, Abdelsalam H, Teleb NH, Abd-Elkader OH, Zhang Q. Exploring the structural, electronic, and hydrogen storage properties of hexagonal boron nitride and carbon nanotubes: insights from single-walled to doped double-walled configurations. Nature 2004; 14: 4970.
  • [23] Khan MI, Amin MU, Buzdar SA, Nabi G, Tahir MB, Alarfaji SS. Computational study of Fe- and Mn-decocted hexagonal boron nitride for hydrogen storage applications, Int. J. of Hydrogen Energy 2024; 65: 727-739.
  • [24] Matveev AT, Kovalskii AM, Antipina LY, Klimchuk DO, Manakhov AM, Al-Qasim, AS, Shtansky DV, Experimental and theoretical insights into enhanced hydrogen uptake by H2-activated BNOC nanomaterials, International Journal of Hydrogen Energy 2025: 97: 787-797,
  • [25] Kaskun S, Kayfeci M. The synthesized nickel-doped multi-walled carbon nanotubes for hydrogen storage under moderate pressures. Int. J. Hydrogen Energy 2018;43(23): 10773-10778.
  • [26] De Volder MF, Tawfick SH, Baughman RH, Hart, A. J. Carbon nanotubes: present and future commercial applications. Science 2013;339(6119): 535-539.
  • [27] Kaskun Ergani S, Sönmez T, Uecker J, Arpa B, Palkovits R. Hydrogen storage capabilities of ionothermally synthesized covalent triazine frameworks (CTFs). International Journal of Hydrogen Energy 2023;48(87): 34154-34163.

Year 2025, Volume: 10 Issue: 3, 1181 - 1192, 25.09.2025
https://doi.org/10.58559/ijes.1747006

Abstract

References

  • [1] Barbir F, Veziroglu TN. Hydrogen–The Wonder Fuel. Int. J. Hydrogen Energy 1992; 17(6):391-404.
  • [2] Zhou L. Progress and problems in hydrogen storage methods. Renewable and Sustainable Energy Reviews 2005; 9(4): 395-408.
  • [3] Chalk SG, Miller JF. Key challenges and recent progress in batteries, fuel cells, and hydrogen storage for clean energy systems. Journal of Power Sources 2006;159(1): 73-80.
  • [4] Niaz S, Manzoor T, Pandith AH. Hydrogen storage: Materials, methods and perspectives. Renewable and Sustainable Energy Reviews 2015; 50: 457-469.
  • [5] Wilder JW, Venema LC, Rinzler, AG, Smalley RE, Dekker, C. Electronic structure of atomically resolved carbon nanotubes. Nature 1998; 391: 59-62.
  • [6] Dillon A, Jones KM, Bekkedahl TA, Kiang CH, Bethune DS, Heben MJ. Storage of hydrogen in single-walled carbon nanotubes. Nature, 1997;386: 377-389.
  • [7] Ye Y, Ahn CC, Witham C, Fultz B, Liu J, Rinzler AG, Smalley RE. Hydrogen adsorption and cohesive energy of single-walled carbon nanotubes. Applied Physics Letters 1999; 74(16): 2307-2309.
  • [8] Liu C, Fan YY, Liu M, Cong HT, Cheng HM, Dresselhaus MS. Hydrogen storage in single-walled carbon nanotubes at room temperature. Science, 1999;286(5442): 1127-1129.
  • [9] Yang RT. Hydrogen storage by alkali-doped carbon nanotubes–revisited. Carbon, 2000; 38(4): 623-626.
  • [10] Pyle DS, Gray EM, Webb CJ. Hydrogen storage in carbon nanostructures via spillover. Int. J. Hydrogen Energy 2016; 41(42): 19098-19113.
  • [11] Lueking AD, Yang RT. Hydrogen spillover to enhance hydrogen storage study of the effect of carbon physicochemical properties. App. Cat. A: General 2004; 265(2): 259-268.
  • [12] Zacharia R, Kim KY, Kibria AF, Nahm KS. Enhancement of hydrogen storage capacity of carbon nanotubes via spill-over from vanadium and palladium nanoparticles. Chemical Physics Letters 2005; 412(4-6): 369-375.
  • [13] Chen X, Zhang Y, Gao XP, Pan GL, Jiang XY, Qu JQ, Song DY. Electrochemical hydrogen storage of carbon nanotubes and carbon nanofibers. International Journal of Hydrogen Energy 2004; 29(7): 743-748.
  • [14] Prins R. Hydrogen spillover. Facts and fiction. Chemical reviews, 2012; 112(5): 2714-2738.
  • [15] Rungnim C, Faungnawakij K, Sano N, Kungwan N, Namuangruk S. Hydrogen storage performance of platinum supported carbon nanohorns: A DFT study of reaction mechanisms, thermodynamics, and kinetics. Int. J. Hydrogen Energy 2018; 43(52): 23336-23345.
  • [16] Wang L, Yang RT. New sorbents for hydrogen storage by hydrogen spillover–a review. Energy & Environmental Science 2008; 1(2): 268-279.
  • [17] Blase X, Rubio A, Louie SG, Cohen ML. Stability and band gap constancy of boron nitride nanotubes. EPL (Europhysics Letters) 1994; 28(5): 335.
  • [18] Zhi C, Bando Y, Terao T, Tang C, Kuwahara H, Golberg D. Towards thermoconductive, electrically insulating polymeric composites with boron nitride nanotubes as fillers. Advanced Functional Materials 2009; 19(12): 1857-1862.
  • [19] Wang R, Zhu R, Zhang D. Adsorption of formaldehyde molecule on the pristine and silicon-doped boron nitride nanotubes. Chemical Physics Letters 2008;467(1-3): 131-135.
  • [20] Sankaran M, Viswanathan B, Murthy SS. Boron substituted carbon nanotubes-How appropriate are they for hydrogen storage, Int. J. Hydrogen Energy 2008; 33(1): 393-403.
  • [21] Ma R, Bando Y, Zhu H, Sato T, Xu C, Wu D. Hydrogen uptake in boron nitride nanotubes at room temperature. Journal of the American Chemical Society 2002; 124(26): 7672-7673.
  • [22] Sakr MAS, Abdelsalam H, Teleb NH, Abd-Elkader OH, Zhang Q. Exploring the structural, electronic, and hydrogen storage properties of hexagonal boron nitride and carbon nanotubes: insights from single-walled to doped double-walled configurations. Nature 2004; 14: 4970.
  • [23] Khan MI, Amin MU, Buzdar SA, Nabi G, Tahir MB, Alarfaji SS. Computational study of Fe- and Mn-decocted hexagonal boron nitride for hydrogen storage applications, Int. J. of Hydrogen Energy 2024; 65: 727-739.
  • [24] Matveev AT, Kovalskii AM, Antipina LY, Klimchuk DO, Manakhov AM, Al-Qasim, AS, Shtansky DV, Experimental and theoretical insights into enhanced hydrogen uptake by H2-activated BNOC nanomaterials, International Journal of Hydrogen Energy 2025: 97: 787-797,
  • [25] Kaskun S, Kayfeci M. The synthesized nickel-doped multi-walled carbon nanotubes for hydrogen storage under moderate pressures. Int. J. Hydrogen Energy 2018;43(23): 10773-10778.
  • [26] De Volder MF, Tawfick SH, Baughman RH, Hart, A. J. Carbon nanotubes: present and future commercial applications. Science 2013;339(6119): 535-539.
  • [27] Kaskun Ergani S, Sönmez T, Uecker J, Arpa B, Palkovits R. Hydrogen storage capabilities of ionothermally synthesized covalent triazine frameworks (CTFs). International Journal of Hydrogen Energy 2023;48(87): 34154-34163.
There are 27 citations in total.

Details

Primary Language English
Subjects Renewable Energy Resources , Energy Generation, Conversion and Storage (Excl. Chemical and Electrical)
Journal Section Research Article
Authors

Muhammet Kayfeci 0000-0001-9783-7381

Songül Kaskun Ergani 0000-0002-2760-2218

Publication Date September 25, 2025
Submission Date July 20, 2025
Acceptance Date September 16, 2025
Published in Issue Year 2025 Volume: 10 Issue: 3

Cite

APA Kayfeci, M., & Kaskun Ergani, S. (2025). Tailoring hydrogen storage properties of MWCNTs via h-BN nanoparticle incorporation. International Journal of Energy Studies, 10(3), 1181-1192. https://doi.org/10.58559/ijes.1747006
AMA Kayfeci M, Kaskun Ergani S. Tailoring hydrogen storage properties of MWCNTs via h-BN nanoparticle incorporation. Int J Energy Studies. September 2025;10(3):1181-1192. doi:10.58559/ijes.1747006
Chicago Kayfeci, Muhammet, and Songül Kaskun Ergani. “Tailoring Hydrogen Storage Properties of MWCNTs via H-BN Nanoparticle Incorporation”. International Journal of Energy Studies 10, no. 3 (September 2025): 1181-92. https://doi.org/10.58559/ijes.1747006.
EndNote Kayfeci M, Kaskun Ergani S (September 1, 2025) Tailoring hydrogen storage properties of MWCNTs via h-BN nanoparticle incorporation. International Journal of Energy Studies 10 3 1181–1192.
IEEE M. Kayfeci and S. Kaskun Ergani, “Tailoring hydrogen storage properties of MWCNTs via h-BN nanoparticle incorporation”, Int J Energy Studies, vol. 10, no. 3, pp. 1181–1192, 2025, doi: 10.58559/ijes.1747006.
ISNAD Kayfeci, Muhammet - Kaskun Ergani, Songül. “Tailoring Hydrogen Storage Properties of MWCNTs via H-BN Nanoparticle Incorporation”. International Journal of Energy Studies 10/3 (September2025), 1181-1192. https://doi.org/10.58559/ijes.1747006.
JAMA Kayfeci M, Kaskun Ergani S. Tailoring hydrogen storage properties of MWCNTs via h-BN nanoparticle incorporation. Int J Energy Studies. 2025;10:1181–1192.
MLA Kayfeci, Muhammet and Songül Kaskun Ergani. “Tailoring Hydrogen Storage Properties of MWCNTs via H-BN Nanoparticle Incorporation”. International Journal of Energy Studies, vol. 10, no. 3, 2025, pp. 1181-92, doi:10.58559/ijes.1747006.
Vancouver Kayfeci M, Kaskun Ergani S. Tailoring hydrogen storage properties of MWCNTs via h-BN nanoparticle incorporation. Int J Energy Studies. 2025;10(3):1181-92.