Tailoring hydrogen storage properties of MWCNTs via h-BN nanoparticle incorporation
Year 2025,
Volume: 10 Issue: 3, 1181 - 1192, 25.09.2025
Muhammet Kayfeci
,
Songül Kaskun Ergani
Abstract
The hydrogen absorption capacity of pristine multiwalled carbon nanotubes (MWCNTs) and hexagonal boron nitride (h-BN) nanoparticle-doped MWCNTs (h-BN/MWCNTs) were investigated at 73K under pressures ranging from 5 to 50 bar. The MWCNTs were purified using H₂SO₄/HNO₃ as oxidizing agents, after which h-BN nanoparticles were successfully incorporated onto the purified MWCNTs via a wet chemical method.
The structural and morphological characteristics of the synthesized h-BN/MWCNTs were analyzed using X-ray diffraction (XRD), energy-dispersive X-ray spectroscopy (EDX), transmission electron microscopy (TEM), and scanning electron microscopy (SEM). Hydrogen adsorption measurements for both purified MWCNTs and h-BN/MWCNTs were carried out using Sievert’s apparatus. The results demonstrated that the h-BN/MWCNTs exhibited a hydrogen uptake capacity ranging from 0.77 wt% at 5 bar and 73K to a maximum of 2.01 wt%, highlighting the effectiveness of h-BN incorporation in enhancing hydrogen storage performance.
References
-
[1] Barbir F, Veziroglu TN. Hydrogen–The Wonder Fuel. Int. J. Hydrogen Energy 1992; 17(6):391-404.
-
[2] Zhou L. Progress and problems in hydrogen storage methods. Renewable and Sustainable Energy Reviews 2005; 9(4): 395-408.
-
[3] Chalk SG, Miller JF. Key challenges and recent progress in batteries, fuel cells, and hydrogen storage for clean energy systems. Journal of Power Sources 2006;159(1): 73-80.
-
[4] Niaz S, Manzoor T, Pandith AH. Hydrogen storage: Materials, methods and perspectives. Renewable and Sustainable Energy Reviews 2015; 50: 457-469.
-
[5] Wilder JW, Venema LC, Rinzler, AG, Smalley RE, Dekker, C. Electronic structure of atomically resolved carbon nanotubes. Nature 1998; 391: 59-62.
-
[6] Dillon A, Jones KM, Bekkedahl TA, Kiang CH, Bethune DS, Heben MJ. Storage of hydrogen in single-walled carbon nanotubes. Nature, 1997;386: 377-389.
-
[7] Ye Y, Ahn CC, Witham C, Fultz B, Liu J, Rinzler AG, Smalley RE. Hydrogen adsorption and cohesive energy of single-walled carbon nanotubes. Applied Physics Letters 1999; 74(16): 2307-2309.
-
[8] Liu C, Fan YY, Liu M, Cong HT, Cheng HM, Dresselhaus MS. Hydrogen storage in single-walled carbon nanotubes at room temperature. Science, 1999;286(5442): 1127-1129.
-
[9] Yang RT. Hydrogen storage by alkali-doped carbon nanotubes–revisited. Carbon, 2000; 38(4): 623-626.
-
[10] Pyle DS, Gray EM, Webb CJ. Hydrogen storage in carbon nanostructures via spillover. Int. J. Hydrogen Energy 2016; 41(42): 19098-19113.
-
[11] Lueking AD, Yang RT. Hydrogen spillover to enhance hydrogen storage study of the effect of carbon physicochemical properties. App. Cat. A: General 2004; 265(2): 259-268.
-
[12] Zacharia R, Kim KY, Kibria AF, Nahm KS. Enhancement of hydrogen storage capacity of carbon nanotubes via spill-over from vanadium and palladium nanoparticles. Chemical Physics Letters 2005; 412(4-6): 369-375.
-
[13] Chen X, Zhang Y, Gao XP, Pan GL, Jiang XY, Qu JQ, Song DY. Electrochemical hydrogen storage of carbon nanotubes and carbon nanofibers. International Journal of Hydrogen Energy 2004; 29(7): 743-748.
-
[14] Prins R. Hydrogen spillover. Facts and fiction. Chemical reviews, 2012; 112(5): 2714-2738.
-
[15] Rungnim C, Faungnawakij K, Sano N, Kungwan N, Namuangruk S. Hydrogen storage performance of platinum supported carbon nanohorns: A DFT study of reaction mechanisms, thermodynamics, and kinetics. Int. J. Hydrogen Energy 2018; 43(52): 23336-23345.
-
[16] Wang L, Yang RT. New sorbents for hydrogen storage by hydrogen spillover–a review. Energy & Environmental Science 2008; 1(2): 268-279.
-
[17] Blase X, Rubio A, Louie SG, Cohen ML. Stability and band gap constancy of boron nitride nanotubes. EPL (Europhysics Letters) 1994; 28(5): 335.
-
[18] Zhi C, Bando Y, Terao T, Tang C, Kuwahara H, Golberg D. Towards thermoconductive, electrically insulating polymeric composites with boron nitride nanotubes as fillers. Advanced Functional Materials 2009; 19(12): 1857-1862.
-
[19] Wang R, Zhu R, Zhang D. Adsorption of formaldehyde molecule on the pristine and silicon-doped boron nitride nanotubes. Chemical Physics Letters 2008;467(1-3): 131-135.
-
[20] Sankaran M, Viswanathan B, Murthy SS. Boron substituted carbon nanotubes-How appropriate are they for hydrogen storage, Int. J. Hydrogen Energy 2008; 33(1): 393-403.
-
[21] Ma R, Bando Y, Zhu H, Sato T, Xu C, Wu D. Hydrogen uptake in boron nitride nanotubes at room temperature. Journal of the American Chemical Society 2002; 124(26): 7672-7673.
-
[22] Sakr MAS, Abdelsalam H, Teleb NH, Abd-Elkader OH, Zhang Q. Exploring the structural, electronic, and hydrogen storage properties of hexagonal boron nitride and carbon nanotubes: insights from single-walled to doped double-walled configurations. Nature 2004; 14: 4970.
-
[23] Khan MI, Amin MU, Buzdar SA, Nabi G, Tahir MB, Alarfaji SS. Computational study of Fe- and Mn-decocted hexagonal boron nitride for hydrogen storage applications, Int. J. of Hydrogen Energy 2024; 65: 727-739.
-
[24] Matveev AT, Kovalskii AM, Antipina LY, Klimchuk DO, Manakhov AM, Al-Qasim, AS, Shtansky DV, Experimental and theoretical insights into enhanced hydrogen uptake by H2-activated BNOC nanomaterials, International Journal of Hydrogen Energy 2025: 97: 787-797,
-
[25] Kaskun S, Kayfeci M. The synthesized nickel-doped multi-walled carbon nanotubes for hydrogen storage under moderate pressures. Int. J. Hydrogen Energy 2018;43(23): 10773-10778.
-
[26] De Volder MF, Tawfick SH, Baughman RH, Hart, A. J. Carbon nanotubes: present and future commercial applications. Science 2013;339(6119): 535-539.
-
[27] Kaskun Ergani S, Sönmez T, Uecker J, Arpa B, Palkovits R. Hydrogen storage capabilities of ionothermally synthesized covalent triazine frameworks (CTFs). International Journal of Hydrogen Energy 2023;48(87): 34154-34163.
Year 2025,
Volume: 10 Issue: 3, 1181 - 1192, 25.09.2025
Muhammet Kayfeci
,
Songül Kaskun Ergani
References
-
[1] Barbir F, Veziroglu TN. Hydrogen–The Wonder Fuel. Int. J. Hydrogen Energy 1992; 17(6):391-404.
-
[2] Zhou L. Progress and problems in hydrogen storage methods. Renewable and Sustainable Energy Reviews 2005; 9(4): 395-408.
-
[3] Chalk SG, Miller JF. Key challenges and recent progress in batteries, fuel cells, and hydrogen storage for clean energy systems. Journal of Power Sources 2006;159(1): 73-80.
-
[4] Niaz S, Manzoor T, Pandith AH. Hydrogen storage: Materials, methods and perspectives. Renewable and Sustainable Energy Reviews 2015; 50: 457-469.
-
[5] Wilder JW, Venema LC, Rinzler, AG, Smalley RE, Dekker, C. Electronic structure of atomically resolved carbon nanotubes. Nature 1998; 391: 59-62.
-
[6] Dillon A, Jones KM, Bekkedahl TA, Kiang CH, Bethune DS, Heben MJ. Storage of hydrogen in single-walled carbon nanotubes. Nature, 1997;386: 377-389.
-
[7] Ye Y, Ahn CC, Witham C, Fultz B, Liu J, Rinzler AG, Smalley RE. Hydrogen adsorption and cohesive energy of single-walled carbon nanotubes. Applied Physics Letters 1999; 74(16): 2307-2309.
-
[8] Liu C, Fan YY, Liu M, Cong HT, Cheng HM, Dresselhaus MS. Hydrogen storage in single-walled carbon nanotubes at room temperature. Science, 1999;286(5442): 1127-1129.
-
[9] Yang RT. Hydrogen storage by alkali-doped carbon nanotubes–revisited. Carbon, 2000; 38(4): 623-626.
-
[10] Pyle DS, Gray EM, Webb CJ. Hydrogen storage in carbon nanostructures via spillover. Int. J. Hydrogen Energy 2016; 41(42): 19098-19113.
-
[11] Lueking AD, Yang RT. Hydrogen spillover to enhance hydrogen storage study of the effect of carbon physicochemical properties. App. Cat. A: General 2004; 265(2): 259-268.
-
[12] Zacharia R, Kim KY, Kibria AF, Nahm KS. Enhancement of hydrogen storage capacity of carbon nanotubes via spill-over from vanadium and palladium nanoparticles. Chemical Physics Letters 2005; 412(4-6): 369-375.
-
[13] Chen X, Zhang Y, Gao XP, Pan GL, Jiang XY, Qu JQ, Song DY. Electrochemical hydrogen storage of carbon nanotubes and carbon nanofibers. International Journal of Hydrogen Energy 2004; 29(7): 743-748.
-
[14] Prins R. Hydrogen spillover. Facts and fiction. Chemical reviews, 2012; 112(5): 2714-2738.
-
[15] Rungnim C, Faungnawakij K, Sano N, Kungwan N, Namuangruk S. Hydrogen storage performance of platinum supported carbon nanohorns: A DFT study of reaction mechanisms, thermodynamics, and kinetics. Int. J. Hydrogen Energy 2018; 43(52): 23336-23345.
-
[16] Wang L, Yang RT. New sorbents for hydrogen storage by hydrogen spillover–a review. Energy & Environmental Science 2008; 1(2): 268-279.
-
[17] Blase X, Rubio A, Louie SG, Cohen ML. Stability and band gap constancy of boron nitride nanotubes. EPL (Europhysics Letters) 1994; 28(5): 335.
-
[18] Zhi C, Bando Y, Terao T, Tang C, Kuwahara H, Golberg D. Towards thermoconductive, electrically insulating polymeric composites with boron nitride nanotubes as fillers. Advanced Functional Materials 2009; 19(12): 1857-1862.
-
[19] Wang R, Zhu R, Zhang D. Adsorption of formaldehyde molecule on the pristine and silicon-doped boron nitride nanotubes. Chemical Physics Letters 2008;467(1-3): 131-135.
-
[20] Sankaran M, Viswanathan B, Murthy SS. Boron substituted carbon nanotubes-How appropriate are they for hydrogen storage, Int. J. Hydrogen Energy 2008; 33(1): 393-403.
-
[21] Ma R, Bando Y, Zhu H, Sato T, Xu C, Wu D. Hydrogen uptake in boron nitride nanotubes at room temperature. Journal of the American Chemical Society 2002; 124(26): 7672-7673.
-
[22] Sakr MAS, Abdelsalam H, Teleb NH, Abd-Elkader OH, Zhang Q. Exploring the structural, electronic, and hydrogen storage properties of hexagonal boron nitride and carbon nanotubes: insights from single-walled to doped double-walled configurations. Nature 2004; 14: 4970.
-
[23] Khan MI, Amin MU, Buzdar SA, Nabi G, Tahir MB, Alarfaji SS. Computational study of Fe- and Mn-decocted hexagonal boron nitride for hydrogen storage applications, Int. J. of Hydrogen Energy 2024; 65: 727-739.
-
[24] Matveev AT, Kovalskii AM, Antipina LY, Klimchuk DO, Manakhov AM, Al-Qasim, AS, Shtansky DV, Experimental and theoretical insights into enhanced hydrogen uptake by H2-activated BNOC nanomaterials, International Journal of Hydrogen Energy 2025: 97: 787-797,
-
[25] Kaskun S, Kayfeci M. The synthesized nickel-doped multi-walled carbon nanotubes for hydrogen storage under moderate pressures. Int. J. Hydrogen Energy 2018;43(23): 10773-10778.
-
[26] De Volder MF, Tawfick SH, Baughman RH, Hart, A. J. Carbon nanotubes: present and future commercial applications. Science 2013;339(6119): 535-539.
-
[27] Kaskun Ergani S, Sönmez T, Uecker J, Arpa B, Palkovits R. Hydrogen storage capabilities of ionothermally synthesized covalent triazine frameworks (CTFs). International Journal of Hydrogen Energy 2023;48(87): 34154-34163.