Research Article
BibTex RIS Cite
Year 2024, Volume: 9 Issue: 1, 1 - 20, 30.12.2024
https://doi.org/10.55088/ijesg.1449194

Abstract

References

  • AlZahrani, A. A., & Dincer, I. Integrated solar-based hydrogen extraction analysis. International Journal of Hydrogen Energy, 41(19), 8042–8056. 2016. https://doi.org/10.1016/j.ijhydene.2015.12.103
  • Amao, Y., Sakai, Y., &Takahara, S. Hydrogen Extraction from Solar via a cellulose biomass with an enzymatic system. Chemical Research Intermediates, 42(11), 7753–7759. 2016. https://doi.org/10.1007/s11164-016-26602
  • Arzate Salgado, S. Y., Ramírez Zamora, R. M., Zanella, R., Peral, J., Malato, S., & Maldonado, M. I. Photocatalytic Hydrogen Production. Foreign Energy Journal,41(28), 11933–11940. 2016. https://doi.org/10.1016/j.ijhydene.2016.05.039
  • Bing, L. B., Chandrasekaran, P., Francis Xavier, V. D. C. S., Rajput, H. W., Ann, C. L., Mubarak, N. M., & Lau, S. Y. Hydrogen Extraction through Agricultural Solid Residue in Malaysia utilizing Aspen Plus Engineering Tool. Waste and Biomass Valorization, 11(4), 1403–1419. 2020. https://doi.org/10.1007/s12649-018-0470-z
  • Boudries, R. Techno-economic Assessment of Solar Hydrogen Production Using CPV-electrolysis Systems. Energy Procedia, 93, 96–101. 2016. https://doi.org/10.1016/j.egypro.2016.07.155
  • Boualati, Y., &Saouli, S. Experimental Study of Hydrogen Production Using Solar Energy in Ouargla (South East Algeria). Journal of Solar Energy Engineering, Transactions of the ASME, 140(3). 2018. https://doi.org/10.1115/1.4039332
  • Brynjarsdottir, H., Scully, S. M., &Orlygsson, J. Hydrogen Extraction through biohydrogen and lignocellulosic biomass. International Journal of Hydrogen Energy, 38(34), 14467–14475. 2013. https://doi.org/10.1016/j.ijhydene.2013.09.005
  • Cabezas, M. D., Franco, J. I., &Fasoli, H. J. Optimization of self-regulated hydrogen production from photovoltaic energy. International Journal of Hydrogen Energy, 45(17), 10391–10397. 2020. https://doi.org/10.1016/j.ijhydene.2018.10.203
  • Dimroth, F., Peharz, G., Wittstadt, U., Hacker, B., & Bett, A. W. (n.d.). A PV concentrator using iii-v multi-junction solar cells for hydrogen.
  • Demirbas, A. Hydrogen through water gasification. Part A: Recovery, Utilization and Environmental Effects, 32(14), 1342–1354. 2010. https://doi.org/10.1080/15567030802654038
  • Ganeshan, I. S., Manikandan, V. V. S., Ram Sundhar, V., Sajiv, R., Shanthi, C., Kottayil, S. K., & Ramachandran, T.Regulated hydrogen production using a solar-powered electrolyzer. International Journal of Hydrogen Energy,41(24), 10322–10326. 2016. https://doi.org/10.1016/j.ijhydene.2015.05.048
  • Hossain, M. A., Jewaratnam, J., & Ganesan, P. The prospect of hydrogen production through oil palm biomass – A review. In International Journal of Hydrogen Energy (Vol. 41, Issue 38, pp. 16637–16655. 2016. Elsevier Ltd. https://doi.org/10.1016/j.ijhydene.2016.07.104
  • Kalinci, Y., Hepbasli, A., & Dincer, I. Hydrogen Life Cycle Assessment through Biomass. International Journal of Hydrogen Energy, 37(19), 14026–14039. 2012. https://doi.org/10.1016/j.ijhydene.2012.06.015
  • khanmohammadi, S., & Saadat-Targhi, M. Integrated system solar energy through waste food. Energy, 171, 1066–1076. 2019. https://doi.org/10.1016/j.energy.2019.01.096
  • Chen, J., Lu, Y., Guo, L., Zhang, X., & Xiao, P.Supercritical Hydrogen Extraction via Biomass.International Journal of Hydrogen Energy, 35(13), 7134–7141. 2010. https://doi.org/10.1016/j.ijhydene.2010.02.023
  • Marcantonio, V., de Falco, M., Capocelli, M., Bocci, E., Colantoni, A., &Villarini, M. Fluidized bed reactor with different separation systems. Foreign Energy, 44(21), 10350–10360. 2019. https://doi.org/10.1016/j.ijhydene.2019.02.121
  • Ma, Z., Zhang, S. P., Xie, D. Y., & Yan, Y. J.Novel hydrogen extraction via biomass energy. International Journal of Hydrogen Energy, 39(3), 1274–1279. 2014. https://doi.org/10.1016/j.ijhydene.2013.10.146
  • Müller, S., Stidl, M., Pröll, T., Rauch, R., &Hofbauer, H. Biomass hydrogen: Large-scale hydrogen production based on a dual fluidized bed steam gasification system. Biorefinery, 1(1), 55–61. 2011. https://doi.org/10.1007/s13399-011-0004-4
  • Xu, C., Chen, S., Soomro, A., Sun, Z., & Xiang, W.Hydrogen-rich syngas production through gasification of biomass. Journal of the Energy Institute, 91(6), 805–816. 2018. https://doi.org/10.1016/j.joei.2017.10.014
  • Zamfirescu, C., & Dincer, I. Assessment of a new integrated solar energy system for hydrogen production. Solar Energy, 107, 700–713. 2014. https://doi.org/10.1016/j.solener.2014.05.036
  • Zhang, L., Li, F., Sun, B., & Zhang, C. Intensified optimization design, and coupled power system. Energies, 12(4). 2019. https://doi.org/10.3390/en12040687
  • Samuel, O. D., Aigba, P. A., Tran, T. K., Fayaz, H., Pastore, C., Der, O., Erçetin, A., Enweremadu, C. C., & Mustafa, A. Comparison of the Techno-Economic and Environmental Assessment of Hydrodynamic Cavitation and Mechanical Stirring Reactors for the Production of Sustainable Hevea brasiliensis Ethyl Ester. Sustainability, 15(23), 16287. 2023. https://doi.org/10.3390/su152316287
  • Kitegi, M. S. P., Lare, Y., & Coulibaly, O. Potential for Green Hydrogen Production from Biomass, Solar, and Wind in Togo. Smart Grid and Renewable Energy, 13(02), 17–27. 2022. https://doi.org/10.4236/sgre.2022.132002
  • Kumar, M., Oyedun, A. O., & Kumar, A. A comparative analysis of hydrogen production from the thermochemical conversion of algal biomass. International Journal of Hydrogen Energy, 44(21), 10384–10397. 2019. https://doi.org/10.1016/j.ijhydene.2019.02.220
  • Li, D., Ishikawa, C., Koike, M., Wang, L., Nakagawa, Y., &Tomishige, K. Renewable Hydrogen-supported Co catalysts. International Journal of Hydrogen Energy, 38(9),3572–3581. 2013. https://doi.org/10.1016/j.ijhydene.2013.01.057
  • Liu, Q., Bai, Z., Wang, X., Lei, J., &Jin, H. Investigation of thermodynamic performances for two solar-biomass hybrid combined cycle power generation systems. Energy Conversion and Management, 122, 252–262. 2016. https://doi.org/10.1016/j.enconman.2016.05.080
  • Sakr, I. M., Abdelsalam, A. M., & El-Askary, W. A. Electrode demerit on hydrogen extraction via solar. Energy, 140, 625–632. 2017. https://doi.org/10.1016/j.energy.2017.09.019
  • Salkuyeh, Y. K., Saville, B. A., & MacLean, H. L.Techno-economic analysis and life cycle assessment hydrogen through biomass. International Journal of Hydrogen Energy, 43(20), 9514–9528. 2018. https://doi.org/10.1016/j.ijhydene.2018.04.024

MODELLING AND EXERGETIC TECHNO-ECONOMIC ANALYSIS OF A SYSTEM FOR HYDROGEN PRODUCTION FROM EMPTY BANANA FRUIT BUNCH

Year 2024, Volume: 9 Issue: 1, 1 - 20, 30.12.2024
https://doi.org/10.55088/ijesg.1449194

Abstract

One of the most effective and reliable methods for generating hydrogen fuel using biomass is the gasification method. However, utilization of different biomass feedstock has the ability to withstand production of syngas which can be utilized for several applications. The study investigated the feasibility of hydrogen from Empty Banana Fruit Bunch (EBFB) biomass and the energetic techno-economic analyses of biomass gasification plant with a developed system simulation model aspen plus simulator V11. Five chemical reactions were used in production process and were simulated in ASPEN Plus simulator through biomass gasification method which aimed in removing C, CO, CO2, CH4, and H2O to convert them into hydrogen gas. However, the total exergy out divided by the total exergy in gives exergy efficiency. Hence, total exergy out subtracted from total exergy in depicts exergy destruction. The exego-economic method utilized in the exergo-economic analyses is the Specific Cost method (SPECO). The results affirmed that 80.465 kg/hr of H2 can be produced from 2000 kg/hr of empty banana fruit bunch at every 39.92 k.mol/hr mole flow of EBFB. However, at a temperature below 900 0C CO decreases, CO2 increases. Above 1000 0C, CO increases hence decreases CO2 emission. The system total exergy in, total exergy out, percentage exergy efficiency, and exergy destruction are 4534.77 kJ/kg, 3857.295 kJ/kg, 0.8506 %, and 677.475 kJ/kg. Hence, system exergy stream cost rate, component-related cost rate, component-related cost difference, and component exergoeconomic factor are 407527.644$/h 1555.57$/h, 0.5679%, and 0.9089% respectively. Further studies may concentrate on how to reduce CO through regulated temperature and pressure differences so as to increase the quantity of hydrogen production.

Ethical Statement

The authors gratefully acknowledge the reviewers for their scientific contributions to this article.

Supporting Institution

Federal University of Petroleum Resources Effurun Delta State Nigeria

Thanks

The authors gratefully acknowledge the reviewers for their scientific contributions to this article

References

  • AlZahrani, A. A., & Dincer, I. Integrated solar-based hydrogen extraction analysis. International Journal of Hydrogen Energy, 41(19), 8042–8056. 2016. https://doi.org/10.1016/j.ijhydene.2015.12.103
  • Amao, Y., Sakai, Y., &Takahara, S. Hydrogen Extraction from Solar via a cellulose biomass with an enzymatic system. Chemical Research Intermediates, 42(11), 7753–7759. 2016. https://doi.org/10.1007/s11164-016-26602
  • Arzate Salgado, S. Y., Ramírez Zamora, R. M., Zanella, R., Peral, J., Malato, S., & Maldonado, M. I. Photocatalytic Hydrogen Production. Foreign Energy Journal,41(28), 11933–11940. 2016. https://doi.org/10.1016/j.ijhydene.2016.05.039
  • Bing, L. B., Chandrasekaran, P., Francis Xavier, V. D. C. S., Rajput, H. W., Ann, C. L., Mubarak, N. M., & Lau, S. Y. Hydrogen Extraction through Agricultural Solid Residue in Malaysia utilizing Aspen Plus Engineering Tool. Waste and Biomass Valorization, 11(4), 1403–1419. 2020. https://doi.org/10.1007/s12649-018-0470-z
  • Boudries, R. Techno-economic Assessment of Solar Hydrogen Production Using CPV-electrolysis Systems. Energy Procedia, 93, 96–101. 2016. https://doi.org/10.1016/j.egypro.2016.07.155
  • Boualati, Y., &Saouli, S. Experimental Study of Hydrogen Production Using Solar Energy in Ouargla (South East Algeria). Journal of Solar Energy Engineering, Transactions of the ASME, 140(3). 2018. https://doi.org/10.1115/1.4039332
  • Brynjarsdottir, H., Scully, S. M., &Orlygsson, J. Hydrogen Extraction through biohydrogen and lignocellulosic biomass. International Journal of Hydrogen Energy, 38(34), 14467–14475. 2013. https://doi.org/10.1016/j.ijhydene.2013.09.005
  • Cabezas, M. D., Franco, J. I., &Fasoli, H. J. Optimization of self-regulated hydrogen production from photovoltaic energy. International Journal of Hydrogen Energy, 45(17), 10391–10397. 2020. https://doi.org/10.1016/j.ijhydene.2018.10.203
  • Dimroth, F., Peharz, G., Wittstadt, U., Hacker, B., & Bett, A. W. (n.d.). A PV concentrator using iii-v multi-junction solar cells for hydrogen.
  • Demirbas, A. Hydrogen through water gasification. Part A: Recovery, Utilization and Environmental Effects, 32(14), 1342–1354. 2010. https://doi.org/10.1080/15567030802654038
  • Ganeshan, I. S., Manikandan, V. V. S., Ram Sundhar, V., Sajiv, R., Shanthi, C., Kottayil, S. K., & Ramachandran, T.Regulated hydrogen production using a solar-powered electrolyzer. International Journal of Hydrogen Energy,41(24), 10322–10326. 2016. https://doi.org/10.1016/j.ijhydene.2015.05.048
  • Hossain, M. A., Jewaratnam, J., & Ganesan, P. The prospect of hydrogen production through oil palm biomass – A review. In International Journal of Hydrogen Energy (Vol. 41, Issue 38, pp. 16637–16655. 2016. Elsevier Ltd. https://doi.org/10.1016/j.ijhydene.2016.07.104
  • Kalinci, Y., Hepbasli, A., & Dincer, I. Hydrogen Life Cycle Assessment through Biomass. International Journal of Hydrogen Energy, 37(19), 14026–14039. 2012. https://doi.org/10.1016/j.ijhydene.2012.06.015
  • khanmohammadi, S., & Saadat-Targhi, M. Integrated system solar energy through waste food. Energy, 171, 1066–1076. 2019. https://doi.org/10.1016/j.energy.2019.01.096
  • Chen, J., Lu, Y., Guo, L., Zhang, X., & Xiao, P.Supercritical Hydrogen Extraction via Biomass.International Journal of Hydrogen Energy, 35(13), 7134–7141. 2010. https://doi.org/10.1016/j.ijhydene.2010.02.023
  • Marcantonio, V., de Falco, M., Capocelli, M., Bocci, E., Colantoni, A., &Villarini, M. Fluidized bed reactor with different separation systems. Foreign Energy, 44(21), 10350–10360. 2019. https://doi.org/10.1016/j.ijhydene.2019.02.121
  • Ma, Z., Zhang, S. P., Xie, D. Y., & Yan, Y. J.Novel hydrogen extraction via biomass energy. International Journal of Hydrogen Energy, 39(3), 1274–1279. 2014. https://doi.org/10.1016/j.ijhydene.2013.10.146
  • Müller, S., Stidl, M., Pröll, T., Rauch, R., &Hofbauer, H. Biomass hydrogen: Large-scale hydrogen production based on a dual fluidized bed steam gasification system. Biorefinery, 1(1), 55–61. 2011. https://doi.org/10.1007/s13399-011-0004-4
  • Xu, C., Chen, S., Soomro, A., Sun, Z., & Xiang, W.Hydrogen-rich syngas production through gasification of biomass. Journal of the Energy Institute, 91(6), 805–816. 2018. https://doi.org/10.1016/j.joei.2017.10.014
  • Zamfirescu, C., & Dincer, I. Assessment of a new integrated solar energy system for hydrogen production. Solar Energy, 107, 700–713. 2014. https://doi.org/10.1016/j.solener.2014.05.036
  • Zhang, L., Li, F., Sun, B., & Zhang, C. Intensified optimization design, and coupled power system. Energies, 12(4). 2019. https://doi.org/10.3390/en12040687
  • Samuel, O. D., Aigba, P. A., Tran, T. K., Fayaz, H., Pastore, C., Der, O., Erçetin, A., Enweremadu, C. C., & Mustafa, A. Comparison of the Techno-Economic and Environmental Assessment of Hydrodynamic Cavitation and Mechanical Stirring Reactors for the Production of Sustainable Hevea brasiliensis Ethyl Ester. Sustainability, 15(23), 16287. 2023. https://doi.org/10.3390/su152316287
  • Kitegi, M. S. P., Lare, Y., & Coulibaly, O. Potential for Green Hydrogen Production from Biomass, Solar, and Wind in Togo. Smart Grid and Renewable Energy, 13(02), 17–27. 2022. https://doi.org/10.4236/sgre.2022.132002
  • Kumar, M., Oyedun, A. O., & Kumar, A. A comparative analysis of hydrogen production from the thermochemical conversion of algal biomass. International Journal of Hydrogen Energy, 44(21), 10384–10397. 2019. https://doi.org/10.1016/j.ijhydene.2019.02.220
  • Li, D., Ishikawa, C., Koike, M., Wang, L., Nakagawa, Y., &Tomishige, K. Renewable Hydrogen-supported Co catalysts. International Journal of Hydrogen Energy, 38(9),3572–3581. 2013. https://doi.org/10.1016/j.ijhydene.2013.01.057
  • Liu, Q., Bai, Z., Wang, X., Lei, J., &Jin, H. Investigation of thermodynamic performances for two solar-biomass hybrid combined cycle power generation systems. Energy Conversion and Management, 122, 252–262. 2016. https://doi.org/10.1016/j.enconman.2016.05.080
  • Sakr, I. M., Abdelsalam, A. M., & El-Askary, W. A. Electrode demerit on hydrogen extraction via solar. Energy, 140, 625–632. 2017. https://doi.org/10.1016/j.energy.2017.09.019
  • Salkuyeh, Y. K., Saville, B. A., & MacLean, H. L.Techno-economic analysis and life cycle assessment hydrogen through biomass. International Journal of Hydrogen Energy, 43(20), 9514–9528. 2018. https://doi.org/10.1016/j.ijhydene.2018.04.024
There are 28 citations in total.

Details

Primary Language English
Subjects Electrical Energy Generation (Incl. Renewables, Excl. Photovoltaics), Energy Systems Engineering (Other)
Journal Section Research Article
Authors

Akpaduado John 0000-0002-8220-7093

Joseph Oyekale 0000-0003-4018-4660

Publication Date December 30, 2024
Submission Date March 8, 2024
Acceptance Date December 16, 2024
Published in Issue Year 2024 Volume: 9 Issue: 1

Cite

IEEE A. John and J. Oyekale, “MODELLING AND EXERGETIC TECHNO-ECONOMIC ANALYSIS OF A SYSTEM FOR HYDROGEN PRODUCTION FROM EMPTY BANANA FRUIT BUNCH”, IJESG, vol. 9, no. 1, pp. 1–20, 2024, doi: 10.55088/ijesg.1449194.

All articles published by IJESG are licensed under the Creative Commons Attribution 4.0 International License. This permits anyone to copy, redistribute, remix, transmit and adapt the work provided the original work and source is appropriately cited.