Research Article
BibTex RIS Cite
Year 2024, Volume: 9 Issue: 1, 21 - 33, 30.12.2024
https://doi.org/10.55088/ijesg.1569947

Abstract

References

  • Abdelghafar, M. M., Hassan, M. A., Kayed, H., “Comprehensive analysis of combined power cycles driven by sCO2-based concentrated solar power: Energy, exergy, and exergoeconomic perspectives”, Energy Conversion and Management, 301, 118046, 2024.
  • Abid, M., Khan, M. S., Ratlamwala, T. A. H., “Comparative energy, exergy and exergo-economic analysis of solar driven supercritical carbon dioxide power and hydrogen generation cycle”, International Journal of Hydrogen Energy, 45(9), 5653-5667, 2020.
  • Adibhatla, S., Kaushik, S. C., “Energy, exergy and economic (3E) analysis of integrated solar direct steam generation combined cycle power plant”, Sustainable Energy Technologies and Assessments, 20, 88-97, 2017.
  • Almutairi, K., Nazari, M. A., Salem, M., Rashidi, M. M., Assad, M. E. H., Padmanaban, S., “A review on applications of solar energy for preheating in power plants”, Alexandria Engineering Journal, 61(7), 5283-5294, 2022.
  • Al-Sulaiman, F. A., Atif, M., “Performance comparison of different supercritical carbon dioxide Brayton cycles integrated with a solar power tower”, Energy, 82, 61-71, 2015.
  • Atif, M., Al-Sulaiman, F. A., “Energy and exergy analyses of solar tower power plant driven supercritical carbon dioxide recompression cycles for six different locations”, Renewable and Sustainable Energy Reviews, 68, 153-167, 2017.
  • Bai, W., Li, H., Zhang, X., Qiao, Y., Zhang, C., Gao, W., Yao, M., “Thermodynamic analysis of CO2–SF6 mixture working fluid supercritical Brayton cycle used for solar power plants”, Energy, 261, 124780, 2022.
  • Bashan, V., Gumus, E., “Comprehensive energy and exergy analysis on optimal design parameters of recuperative supercritical CO2 power cycle”, International Journal of Exergy, 27(2), 165-205, 2018.
  • Bejan, A., Tsatsaronis, G., Moran, M. J., Thermal Design and Optimization, John Wiley & Sons, 1995.
  • Cengel, Y. A., Boles, M. A., Gas-Vapor Mixtures and Air-Conditioning, Thermodynamics and Engineering Approach, 8th ed., McGraw Hill, New York, NY, USA, 725-729, 2015.
  • Citaristi, I., “International Energy Agency—IEA”, in: The Europa Directory of International Organizations 2022, Routledge, pp. 701-702, 2022.
  • Dincer, I., Rosen, M. A., “Energy, environment and sustainable development”, Applied Energy, 64(1-4), 427-440, 1999.
  • Ehsan, M. M., Awais, M., Lee, S., Salehin, S., Guan, Z., Gurgenci, H., “Potential prospects of supercritical CO2 power cycles for commercialisation: Applicability, research status, and advancement”, Renewable and Sustainable Energy Reviews, 172, 113044, 2023.
  • Guelpa, E., Verda, V., “Exergoeconomic analysis for the design improvement of supercritical CO2 cycle in concentrated solar plant”, Energy, 206, 118024, 2020.
  • Guo, J. Q., Li, M. J., He, Y. L., Jiang, T., Ma, T., Xu, J. L., Cao, F., “A systematic review of supercritical carbon dioxide (S-CO2) power cycle for energy industries: Technologies, key issues, and potential prospects”, Energy Conversion and Management, 258, 115437, 2022.
  • Heller, L., Glos, S., Buck, R., “Techno-economic selection and initial evaluation of supercritical CO2 cycles for particle technology-based concentrating solar power plants”, Renewable Energy, 181, 833-842, 2022.
  • Hinkley, J., Hayward, J., McNaughton, R., Edwards, J., Lovegrove, K., “Concentrating solar fuels roadmap”, ARENA Project Solar Hybrid Fuels, 2016.
  • Kalogirou, S. A., “Solar thermal collectors and applications”, Progress in Energy and Combustion Science, 30(3), 231-295, 2004.
  • Khan, M. N., Zoghi, M., Habibi, H., Zanj, A., Anqi, A. E., “Waste heat recovery of two solar-driven supercritical CO2 Brayton cycles: Exergoeconomic analysis, comparative study, and monthly performance”, Applied Thermal Engineering, 214, 118837, 2022.
  • Kulhanek, M., Dostal, V., “Supercritical carbon dioxide cycles thermodynamic analysis and comparison”, Proceeding of Supercritical CO2 Power Cycle Symposium, 24-25 May, 2011.
  • Li, M. J., Zhu, H. H., Guo, J. Q., Wang, K., Tao, W. Q., “The development technology and applications of supercritical CO2 power cycle in nuclear energy, solar energy and other energy industries”, Applied Thermal Engineering, 126, 255-275, 2017.
  • Liang, Y., Chen, J., Luo, X., Chen, J., Yang, Z., Chen, Y., “Simultaneous optimization of combined supercritical CO2 Brayton cycle and organic Rankine cycle integrated with concentrated solar power system”, Journal of Cleaner Production, 266, 121927, 2020.
  • Liu, M., Zhang, X., Yang, K., Wang, B., Yan, J., “Comparison and sensitivity analysis of the efficiency enhancements of coal-fired power plants integrated with supercritical CO2 Brayton cycle and steam Rankine cycle”, Energy Conversion and Management, 198, 111918, 2019.
  • Mehos, M., Turchi, C., Vidal, J., Wagner, M., Ma, Z., Ho, C., Kruizenga, A., “Concentrating solar power Gen3 demonstration roadmap”, National Renewable Energy Lab (NREL), Golden, CO, NREL/TP-5500-67464, 2017.
  • Mohammadi, Z., Fallah, M., Mahmoudi, S. S., “Advanced exergy analysis of recompression supercritical CO2 cycle”, Energy, 178, 631-643, 2019.
  • Montes, M. J., Guedez, R., Linares, J. I., Reyes-Belmonte, M. A., “Advances in solar thermal power plants based on pressurised central receivers and supercritical power cycles”, Energy Conversion and Management, 293, 117454, 2023.
  • Okonkwo, E. C., Okwose, C. F., Abid, M., Ratlamwala, T. A., “Second-law analysis and exergoeconomics optimization of a solar tower–driven combined-cycle power plant using supercritical CO2”, Journal of Energy Engineering, 144(3), 04018021, 2018.
  • Osorio, J. D., Hovsapian, R., Ordonez, J. C., “Dynamic analysis of concentrated solar supercritical CO2-based power generation closed-loop cycle”, Applied Thermal Engineering, 93, 920-934, 2016.
  • Shah, Y. T., Advanced Power Generation Systems: Thermal Sources, CRC Press, 2022.
  • Sun, L., Wang, D., Xie, Y., “Energy, exergy and exergoeconomic analysis of two supercritical CO2 cycles for waste heat recovery of gas turbine”, Applied Thermal Engineering, 196, 117337, 2021.
  • Xin, T., Xu, C., Yang, Y., “Thermodynamic analysis of a novel supercritical carbon dioxide Brayton cycle based on the thermal cycle splitting analytical method”, Energy Conversion and Management, 225, 113458, 2020.

TRIPLE-OBJECTIVE OPTIMIZATION OF SUPERCRITICAL CO2 RECOMPRESSION BRAYTON CYCLE IN SOLAR TOWER SYSTEMS WITH ENERGY, EXERGY AND EXERGOECONOMIC ANALYSIS

Year 2024, Volume: 9 Issue: 1, 21 - 33, 30.12.2024
https://doi.org/10.55088/ijesg.1569947

Abstract

This study addresses the energy, exergy and exergoeconomic analyses of the supercritical CO2 recompression Brayton cycle used in solar tower systems. In the study, a three-objective optimization model was developed using artificial neural networks (ANN) to optimize the system performance. The model provides information for the development of sustainable solar energy systems by providing analyses on key factors such as energy efficiency, environmental impact and economic viability. The results show that the supercritical CO2 cycle provides higher thermal efficiency compared to conventional systems and offers cost advantages by reducing the size of system components. In addition, the analyses show that energy and exergy losses can be minimized and the cost effectiveness of the system can be increased, providing important findings in terms of the efficiency and economic viability of solar energy systems.

References

  • Abdelghafar, M. M., Hassan, M. A., Kayed, H., “Comprehensive analysis of combined power cycles driven by sCO2-based concentrated solar power: Energy, exergy, and exergoeconomic perspectives”, Energy Conversion and Management, 301, 118046, 2024.
  • Abid, M., Khan, M. S., Ratlamwala, T. A. H., “Comparative energy, exergy and exergo-economic analysis of solar driven supercritical carbon dioxide power and hydrogen generation cycle”, International Journal of Hydrogen Energy, 45(9), 5653-5667, 2020.
  • Adibhatla, S., Kaushik, S. C., “Energy, exergy and economic (3E) analysis of integrated solar direct steam generation combined cycle power plant”, Sustainable Energy Technologies and Assessments, 20, 88-97, 2017.
  • Almutairi, K., Nazari, M. A., Salem, M., Rashidi, M. M., Assad, M. E. H., Padmanaban, S., “A review on applications of solar energy for preheating in power plants”, Alexandria Engineering Journal, 61(7), 5283-5294, 2022.
  • Al-Sulaiman, F. A., Atif, M., “Performance comparison of different supercritical carbon dioxide Brayton cycles integrated with a solar power tower”, Energy, 82, 61-71, 2015.
  • Atif, M., Al-Sulaiman, F. A., “Energy and exergy analyses of solar tower power plant driven supercritical carbon dioxide recompression cycles for six different locations”, Renewable and Sustainable Energy Reviews, 68, 153-167, 2017.
  • Bai, W., Li, H., Zhang, X., Qiao, Y., Zhang, C., Gao, W., Yao, M., “Thermodynamic analysis of CO2–SF6 mixture working fluid supercritical Brayton cycle used for solar power plants”, Energy, 261, 124780, 2022.
  • Bashan, V., Gumus, E., “Comprehensive energy and exergy analysis on optimal design parameters of recuperative supercritical CO2 power cycle”, International Journal of Exergy, 27(2), 165-205, 2018.
  • Bejan, A., Tsatsaronis, G., Moran, M. J., Thermal Design and Optimization, John Wiley & Sons, 1995.
  • Cengel, Y. A., Boles, M. A., Gas-Vapor Mixtures and Air-Conditioning, Thermodynamics and Engineering Approach, 8th ed., McGraw Hill, New York, NY, USA, 725-729, 2015.
  • Citaristi, I., “International Energy Agency—IEA”, in: The Europa Directory of International Organizations 2022, Routledge, pp. 701-702, 2022.
  • Dincer, I., Rosen, M. A., “Energy, environment and sustainable development”, Applied Energy, 64(1-4), 427-440, 1999.
  • Ehsan, M. M., Awais, M., Lee, S., Salehin, S., Guan, Z., Gurgenci, H., “Potential prospects of supercritical CO2 power cycles for commercialisation: Applicability, research status, and advancement”, Renewable and Sustainable Energy Reviews, 172, 113044, 2023.
  • Guelpa, E., Verda, V., “Exergoeconomic analysis for the design improvement of supercritical CO2 cycle in concentrated solar plant”, Energy, 206, 118024, 2020.
  • Guo, J. Q., Li, M. J., He, Y. L., Jiang, T., Ma, T., Xu, J. L., Cao, F., “A systematic review of supercritical carbon dioxide (S-CO2) power cycle for energy industries: Technologies, key issues, and potential prospects”, Energy Conversion and Management, 258, 115437, 2022.
  • Heller, L., Glos, S., Buck, R., “Techno-economic selection and initial evaluation of supercritical CO2 cycles for particle technology-based concentrating solar power plants”, Renewable Energy, 181, 833-842, 2022.
  • Hinkley, J., Hayward, J., McNaughton, R., Edwards, J., Lovegrove, K., “Concentrating solar fuels roadmap”, ARENA Project Solar Hybrid Fuels, 2016.
  • Kalogirou, S. A., “Solar thermal collectors and applications”, Progress in Energy and Combustion Science, 30(3), 231-295, 2004.
  • Khan, M. N., Zoghi, M., Habibi, H., Zanj, A., Anqi, A. E., “Waste heat recovery of two solar-driven supercritical CO2 Brayton cycles: Exergoeconomic analysis, comparative study, and monthly performance”, Applied Thermal Engineering, 214, 118837, 2022.
  • Kulhanek, M., Dostal, V., “Supercritical carbon dioxide cycles thermodynamic analysis and comparison”, Proceeding of Supercritical CO2 Power Cycle Symposium, 24-25 May, 2011.
  • Li, M. J., Zhu, H. H., Guo, J. Q., Wang, K., Tao, W. Q., “The development technology and applications of supercritical CO2 power cycle in nuclear energy, solar energy and other energy industries”, Applied Thermal Engineering, 126, 255-275, 2017.
  • Liang, Y., Chen, J., Luo, X., Chen, J., Yang, Z., Chen, Y., “Simultaneous optimization of combined supercritical CO2 Brayton cycle and organic Rankine cycle integrated with concentrated solar power system”, Journal of Cleaner Production, 266, 121927, 2020.
  • Liu, M., Zhang, X., Yang, K., Wang, B., Yan, J., “Comparison and sensitivity analysis of the efficiency enhancements of coal-fired power plants integrated with supercritical CO2 Brayton cycle and steam Rankine cycle”, Energy Conversion and Management, 198, 111918, 2019.
  • Mehos, M., Turchi, C., Vidal, J., Wagner, M., Ma, Z., Ho, C., Kruizenga, A., “Concentrating solar power Gen3 demonstration roadmap”, National Renewable Energy Lab (NREL), Golden, CO, NREL/TP-5500-67464, 2017.
  • Mohammadi, Z., Fallah, M., Mahmoudi, S. S., “Advanced exergy analysis of recompression supercritical CO2 cycle”, Energy, 178, 631-643, 2019.
  • Montes, M. J., Guedez, R., Linares, J. I., Reyes-Belmonte, M. A., “Advances in solar thermal power plants based on pressurised central receivers and supercritical power cycles”, Energy Conversion and Management, 293, 117454, 2023.
  • Okonkwo, E. C., Okwose, C. F., Abid, M., Ratlamwala, T. A., “Second-law analysis and exergoeconomics optimization of a solar tower–driven combined-cycle power plant using supercritical CO2”, Journal of Energy Engineering, 144(3), 04018021, 2018.
  • Osorio, J. D., Hovsapian, R., Ordonez, J. C., “Dynamic analysis of concentrated solar supercritical CO2-based power generation closed-loop cycle”, Applied Thermal Engineering, 93, 920-934, 2016.
  • Shah, Y. T., Advanced Power Generation Systems: Thermal Sources, CRC Press, 2022.
  • Sun, L., Wang, D., Xie, Y., “Energy, exergy and exergoeconomic analysis of two supercritical CO2 cycles for waste heat recovery of gas turbine”, Applied Thermal Engineering, 196, 117337, 2021.
  • Xin, T., Xu, C., Yang, Y., “Thermodynamic analysis of a novel supercritical carbon dioxide Brayton cycle based on the thermal cycle splitting analytical method”, Energy Conversion and Management, 225, 113458, 2020.
There are 31 citations in total.

Details

Primary Language English
Subjects Electrical Energy Generation (Incl. Renewables, Excl. Photovoltaics), Energy Systems Engineering (Other)
Journal Section Research Article
Authors

Ahmet Elbir 0000-0001-8934-7665

Publication Date December 30, 2024
Submission Date October 18, 2024
Acceptance Date December 16, 2024
Published in Issue Year 2024 Volume: 9 Issue: 1

Cite

IEEE A. Elbir, “TRIPLE-OBJECTIVE OPTIMIZATION OF SUPERCRITICAL CO2 RECOMPRESSION BRAYTON CYCLE IN SOLAR TOWER SYSTEMS WITH ENERGY, EXERGY AND EXERGOECONOMIC ANALYSIS”, IJESG, vol. 9, no. 1, pp. 21–33, 2024, doi: 10.55088/ijesg.1569947.

All articles published by IJESG are licensed under the Creative Commons Attribution 4.0 International License. This permits anyone to copy, redistribute, remix, transmit and adapt the work provided the original work and source is appropriately cited.