Soil stabilization known as the process of improving the engineering properties of soils is a method applied when the engineering properties of soil are not suitable for purpose. There are several methods of soil stabilization that could be implemented to improve the physical characteristics of the soils. MICP is one of the most popular bio-mediated processes for improving the engineering properties of porous geomaterials as alternative to other methods. The MICP, nowadays as a subject of intense research interest in the field of biogeotechnology providing solutions to a wider range of engineering applications, utilises bacteria to hydrolyse urea to give carbonate ions which react with a calcium-rich solution to produce calcium carbonate that binds the soil particles together leading to increased soil strength and stiffness. In this bio-geochemical process, MICP increases the strength and stiffness of the soil due to binded the sand grains together at the particle-particle contacts, which increases the strength and stiffness of the soil. It is concluded that MICP can be used for geotechnical engineering purpose of improving soil properties. This cheap and eco-friendly technique improves strength parameters of the soil such as shear strength and decreases the permeability of gravelly and sandy soil.
Soil Soil stabilization Bio-geochemical process Bio-cementation Microbial Induced Carbonate Precipitation
Primary Language | English |
---|---|
Journal Section | Research Article |
Authors | |
Publication Date | April 1, 2020 |
Published in Issue | Year 2020 Volume: 2 Issue: 1 |