Research Article
BibTex RIS Cite
Year 2017, , 116 - 123, 26.09.2017
https://doi.org/10.19072/ijet.306402

Abstract

References

  • S. Timoshenko and J.N. Goodier, Theory of Elasticity, McGraw-Hill, New York, 1951.
  • B. A. Boley and J. Fr. Weiner, Theory of Thermal Stresses, Wiley, New York, 1960.
  • W. Nowaki, Thermo-Elasticity, Pergamon Press, Oxford, 1965.
  • W. Johnson and P.B. Mellor, Engineering Plasticity, Ellis Harwood, London, 1983.
  • T. Fuchiyama and N. Noda, “Analysis of Thermal Stress in a Plate of Functionally Gradient Material”, The Society of Automotive Engineers of Japan, vol. 16, No.3, pp. 263-268, 1995.
  • L.T. Yu and C.K. Chen, “Application of Taylor Transformation to the Thermal Stresses in Isotropic Annular Fins”, J. Therm. Stresses., vol.21, No.8, pp. 781-809, 1998.
  • B. Gu, P.E. Phelan and S. Mei, “Coupled Heat Transfer and Thermal Stress in High-t-c Thin-Film Superconductor Devices”, Cryogenics, vol. 38, No.4, pp. 411-418, 1998.
  • M.K. Apalak, Z.G. Apalak and R. Gunes, “Thermal and Geometrically Nonlinear Stress Analyses of an Adhesively Bonded Composite Tee Joint with Double Support”, J. Thermoplast. Compos., vol. 17, No.2, pp. 103-136, 2004.
  • R.J. Goldstein, E.G.R. Eckert and F. Burggraf, “Effects of Hole Geometry and Density on Three-Dimensional Film Cooling”, Int. J. Heat. Mass. Tran., vol. 17, pp. 595-607, 1974.
  • Altuglas International Arkema Inc., Exceptional Grade for Broad-Range Applications. Altuglas International Arkema Inc. 100 PA Rt. 413 Bristol, PA 19007, 2015, www.altuglasint.com
  • Evonik Industries, PLEXIGLAS® GS/PLEXIGLAS® XT Product Description, Evonik Röhm GmbH, Kirschenallee, 64293 Darmstadt, Germany, 2015, www.evonik.com
  • Fluent Incorporated (1998a), Gambit: Tutorial Guide, Fluent Incorporated, Lebanon, NH.
  • Fluent Incorporated (1998b), Gambit: User’s Guide, Fluent Incorporated, Lebanon, NH.
  • Fluent Incorporated (1998c), FLUENT 5 User’s Guide, Fluent Incorporated, Lebanon, NH.
  • Fluent Incorporated (1998d), FLUENT Tutorial Guide, Fluent Incorporated, Lebanon, NH.
  • B.E. Launder and D.B. Spalding, Lectures in Mathematical Models of Turbulence, Academic Press, London, 1972.
  • B.E. Launder and D.B. Spalding, “The numerical computation of turbulent flows”, Computer Methods in Applied Mechanics and Engineering, vol.3, pp. 269-89, 1974.
  • C-J. Chen and S-Y. Jaw, Fundamentals of Turbulence Modelling, Taylor & Francis, Washington, DC, 1998.

Thermal Stresses on a Reginal Cooling Plate

Year 2017, , 116 - 123, 26.09.2017
https://doi.org/10.19072/ijet.306402

Abstract

In
this study, stresses and strains that occur on the surface of material are
investigated for a flat plate that is made cooling as numerically and
analytically. The cooling blowing ratios applied to the surface vary between
0.5 and 1.75. The cooling injection angle is 30 degrees with the horizontal.
Plexiglas plate were used in experiments which done for analytical solution and
numerical modelling studies. Air was injected to cooling zone at 57
oC
and 77
o
C. The results show that the cooling surface size varies
with the blow ratio. In addition, the sizes of thermal stresses and
displacements of surface set out that they are indicators of cooling.

References

  • S. Timoshenko and J.N. Goodier, Theory of Elasticity, McGraw-Hill, New York, 1951.
  • B. A. Boley and J. Fr. Weiner, Theory of Thermal Stresses, Wiley, New York, 1960.
  • W. Nowaki, Thermo-Elasticity, Pergamon Press, Oxford, 1965.
  • W. Johnson and P.B. Mellor, Engineering Plasticity, Ellis Harwood, London, 1983.
  • T. Fuchiyama and N. Noda, “Analysis of Thermal Stress in a Plate of Functionally Gradient Material”, The Society of Automotive Engineers of Japan, vol. 16, No.3, pp. 263-268, 1995.
  • L.T. Yu and C.K. Chen, “Application of Taylor Transformation to the Thermal Stresses in Isotropic Annular Fins”, J. Therm. Stresses., vol.21, No.8, pp. 781-809, 1998.
  • B. Gu, P.E. Phelan and S. Mei, “Coupled Heat Transfer and Thermal Stress in High-t-c Thin-Film Superconductor Devices”, Cryogenics, vol. 38, No.4, pp. 411-418, 1998.
  • M.K. Apalak, Z.G. Apalak and R. Gunes, “Thermal and Geometrically Nonlinear Stress Analyses of an Adhesively Bonded Composite Tee Joint with Double Support”, J. Thermoplast. Compos., vol. 17, No.2, pp. 103-136, 2004.
  • R.J. Goldstein, E.G.R. Eckert and F. Burggraf, “Effects of Hole Geometry and Density on Three-Dimensional Film Cooling”, Int. J. Heat. Mass. Tran., vol. 17, pp. 595-607, 1974.
  • Altuglas International Arkema Inc., Exceptional Grade for Broad-Range Applications. Altuglas International Arkema Inc. 100 PA Rt. 413 Bristol, PA 19007, 2015, www.altuglasint.com
  • Evonik Industries, PLEXIGLAS® GS/PLEXIGLAS® XT Product Description, Evonik Röhm GmbH, Kirschenallee, 64293 Darmstadt, Germany, 2015, www.evonik.com
  • Fluent Incorporated (1998a), Gambit: Tutorial Guide, Fluent Incorporated, Lebanon, NH.
  • Fluent Incorporated (1998b), Gambit: User’s Guide, Fluent Incorporated, Lebanon, NH.
  • Fluent Incorporated (1998c), FLUENT 5 User’s Guide, Fluent Incorporated, Lebanon, NH.
  • Fluent Incorporated (1998d), FLUENT Tutorial Guide, Fluent Incorporated, Lebanon, NH.
  • B.E. Launder and D.B. Spalding, Lectures in Mathematical Models of Turbulence, Academic Press, London, 1972.
  • B.E. Launder and D.B. Spalding, “The numerical computation of turbulent flows”, Computer Methods in Applied Mechanics and Engineering, vol.3, pp. 269-89, 1974.
  • C-J. Chen and S-Y. Jaw, Fundamentals of Turbulence Modelling, Taylor & Francis, Washington, DC, 1998.
There are 18 citations in total.

Details

Subjects Engineering
Journal Section Articles
Authors

İbrahim Koç

Publication Date September 26, 2017
Acceptance Date July 21, 2017
Published in Issue Year 2017

Cite

APA Koç, İ. (2017). Thermal Stresses on a Reginal Cooling Plate. International Journal of Engineering Technologies IJET, 3(3), 116-123. https://doi.org/10.19072/ijet.306402
AMA Koç İ. Thermal Stresses on a Reginal Cooling Plate. IJET. September 2017;3(3):116-123. doi:10.19072/ijet.306402
Chicago Koç, İbrahim. “Thermal Stresses on a Reginal Cooling Plate”. International Journal of Engineering Technologies IJET 3, no. 3 (September 2017): 116-23. https://doi.org/10.19072/ijet.306402.
EndNote Koç İ (September 1, 2017) Thermal Stresses on a Reginal Cooling Plate. International Journal of Engineering Technologies IJET 3 3 116–123.
IEEE İ. Koç, “Thermal Stresses on a Reginal Cooling Plate”, IJET, vol. 3, no. 3, pp. 116–123, 2017, doi: 10.19072/ijet.306402.
ISNAD Koç, İbrahim. “Thermal Stresses on a Reginal Cooling Plate”. International Journal of Engineering Technologies IJET 3/3 (September 2017), 116-123. https://doi.org/10.19072/ijet.306402.
JAMA Koç İ. Thermal Stresses on a Reginal Cooling Plate. IJET. 2017;3:116–123.
MLA Koç, İbrahim. “Thermal Stresses on a Reginal Cooling Plate”. International Journal of Engineering Technologies IJET, vol. 3, no. 3, 2017, pp. 116-23, doi:10.19072/ijet.306402.
Vancouver Koç İ. Thermal Stresses on a Reginal Cooling Plate. IJET. 2017;3(3):116-23.

88x31.png Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0)