Research Article
BibTex RIS Cite
Year 2019, Volume: 5 Issue: 1, 15 - 23, 29.03.2019

Abstract

References

  • Y. Lecun, C. Cortes, C.J.C. Burges, MNIST handwritten digit database, http://yann.lecun.com/exdb/mnist/
  • K. Sato, N. Shimoda, Build your own machine-learningpowered robot arm using tensorflow and google cloud Google Cloud blog, 2017.
  • Keras documentation, https://keras.io/
  • TensorFlow, https://www.tensorflow.org/
  • A. Elfasakhany, E. Yanez, K. Baylon, R. Salgado, Design and development of a competitive low-cost robot arm with four degrees of freedom, Modern Mechanical Engineering, pp.47-55.
  • OpenCV library document, https://opencv.org/
  • K. Simonyan, A. Zisserman, Very deep convolutional networks for large-scale image recognition. Arxiv - Computer Vision and Pattern Recognition .
  • S. Raschka, V. Mirajalili, Python machine learning (pp. 341-385).
  • P. Bezak, P. Bozek, Y. Nikitin, Advanced robotic grasping system using deep learning, Procedia Engineering, 96, pp. 10-20, 2014.
  • A. Dhawan, A. Bhat, S. Sharma, H. K. Kaura, Automated robot with object recognition and handling features, International Journal of Electronics and Computer Science Engineering, ISSN- 2277-1956.
  • E. B. Mathew, D. Khanduja, B. Sapra, B. Bhushan, Robotic arm control through human arm movement detection using potentiometers. 2015 International Conference on Recent Developments in Control, Automation and Power Engineering (RDCAPE), 2015.
  • B.Iscimen, H. Atasoy, Y. Kutlu, S. Yildirim, E. Yildirim, Smart robot arm motion using computer vision, 2015.
  • M.A. Jayaram, H. Fleyeh, Convex Hulls in Image Processing, A Scoping Review, American Journal of Intelligent Systems, 2016.
  • N. Rai, B. Rai, P. Rai, Computer vision approach for controlling educational robotic arm based on object properties, 2nd International Conference on Emerging Technology Trends in Electronics, Communication and Networking. 2014
  • T. S. Tonbul, M. Sarıtas, Beş eksenli bir edubot robot kolunda ters kinematic hesaplamalar ve yörünge planlaması. J. Fac. Eng. Arch. Gazi Univ. Vol 18, No 1, 145-167, 2013
  • A. B. Rehiara, Kinematics of adeptthree robot arm, Robot Arms, ISBN: 978-953-307-160-2, 2011.

Controlling A Robotic Arm Using Handwritten Digit Recognition Software

Year 2019, Volume: 5 Issue: 1, 15 - 23, 29.03.2019

Abstract

Repetitive
tasks in the manufacturing industry is becoming more and more commonplace. The
ability to write down a number set and operate the robot using that number set
could increase the productivity in the manufacturing industry. For this
purpose, our team came up with a robotic application which uses MNIST data set
provided by Tensorflow to employ deep learning to identify handwritten digits. 
The system
is equipped with a robotic arm, where an electromagnet is placed on top of the
robotic arm. The movement of the robotic arm is triggered via the recognition
of handwritten digits using the MNIST data set. The real time image is captured
via an external webcam. This robot was designed as a prototype to reduce
repetitive tasks conducted by humans. 

References

  • Y. Lecun, C. Cortes, C.J.C. Burges, MNIST handwritten digit database, http://yann.lecun.com/exdb/mnist/
  • K. Sato, N. Shimoda, Build your own machine-learningpowered robot arm using tensorflow and google cloud Google Cloud blog, 2017.
  • Keras documentation, https://keras.io/
  • TensorFlow, https://www.tensorflow.org/
  • A. Elfasakhany, E. Yanez, K. Baylon, R. Salgado, Design and development of a competitive low-cost robot arm with four degrees of freedom, Modern Mechanical Engineering, pp.47-55.
  • OpenCV library document, https://opencv.org/
  • K. Simonyan, A. Zisserman, Very deep convolutional networks for large-scale image recognition. Arxiv - Computer Vision and Pattern Recognition .
  • S. Raschka, V. Mirajalili, Python machine learning (pp. 341-385).
  • P. Bezak, P. Bozek, Y. Nikitin, Advanced robotic grasping system using deep learning, Procedia Engineering, 96, pp. 10-20, 2014.
  • A. Dhawan, A. Bhat, S. Sharma, H. K. Kaura, Automated robot with object recognition and handling features, International Journal of Electronics and Computer Science Engineering, ISSN- 2277-1956.
  • E. B. Mathew, D. Khanduja, B. Sapra, B. Bhushan, Robotic arm control through human arm movement detection using potentiometers. 2015 International Conference on Recent Developments in Control, Automation and Power Engineering (RDCAPE), 2015.
  • B.Iscimen, H. Atasoy, Y. Kutlu, S. Yildirim, E. Yildirim, Smart robot arm motion using computer vision, 2015.
  • M.A. Jayaram, H. Fleyeh, Convex Hulls in Image Processing, A Scoping Review, American Journal of Intelligent Systems, 2016.
  • N. Rai, B. Rai, P. Rai, Computer vision approach for controlling educational robotic arm based on object properties, 2nd International Conference on Emerging Technology Trends in Electronics, Communication and Networking. 2014
  • T. S. Tonbul, M. Sarıtas, Beş eksenli bir edubot robot kolunda ters kinematic hesaplamalar ve yörünge planlaması. J. Fac. Eng. Arch. Gazi Univ. Vol 18, No 1, 145-167, 2013
  • A. B. Rehiara, Kinematics of adeptthree robot arm, Robot Arms, ISBN: 978-953-307-160-2, 2011.
There are 16 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Makaleler
Authors

Ali Çetinkaya 0000-0003-4535-3953

Onur Öztürk This is me

Ali Okatan This is me 0000-0002-8893-9711

Publication Date March 29, 2019
Acceptance Date January 30, 2019
Published in Issue Year 2019 Volume: 5 Issue: 1

Cite

APA Çetinkaya, A., Öztürk, O., & Okatan, A. (2019). Controlling A Robotic Arm Using Handwritten Digit Recognition Software. International Journal of Engineering Technologies IJET, 5(1), 15-23. https://doi.org/10.19072/ijet.462378
AMA Çetinkaya A, Öztürk O, Okatan A. Controlling A Robotic Arm Using Handwritten Digit Recognition Software. IJET. March 2019;5(1):15-23. doi:10.19072/ijet.462378
Chicago Çetinkaya, Ali, Onur Öztürk, and Ali Okatan. “Controlling A Robotic Arm Using Handwritten Digit Recognition Software”. International Journal of Engineering Technologies IJET 5, no. 1 (March 2019): 15-23. https://doi.org/10.19072/ijet.462378.
EndNote Çetinkaya A, Öztürk O, Okatan A (March 1, 2019) Controlling A Robotic Arm Using Handwritten Digit Recognition Software. International Journal of Engineering Technologies IJET 5 1 15–23.
IEEE A. Çetinkaya, O. Öztürk, and A. Okatan, “Controlling A Robotic Arm Using Handwritten Digit Recognition Software”, IJET, vol. 5, no. 1, pp. 15–23, 2019, doi: 10.19072/ijet.462378.
ISNAD Çetinkaya, Ali et al. “Controlling A Robotic Arm Using Handwritten Digit Recognition Software”. International Journal of Engineering Technologies IJET 5/1 (March 2019), 15-23. https://doi.org/10.19072/ijet.462378.
JAMA Çetinkaya A, Öztürk O, Okatan A. Controlling A Robotic Arm Using Handwritten Digit Recognition Software. IJET. 2019;5:15–23.
MLA Çetinkaya, Ali et al. “Controlling A Robotic Arm Using Handwritten Digit Recognition Software”. International Journal of Engineering Technologies IJET, vol. 5, no. 1, 2019, pp. 15-23, doi:10.19072/ijet.462378.
Vancouver Çetinkaya A, Öztürk O, Okatan A. Controlling A Robotic Arm Using Handwritten Digit Recognition Software. IJET. 2019;5(1):15-23.

88x31.png Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0)