Research Article
BibTex RIS Cite
Year 2020, Volume: 6 Issue: 3, 37 - 44, 29.01.2021
https://doi.org/10.19072/ijet.627225

Abstract

References

  • Wang, K., Gunawan, O., Todorov, T., et al., “Thermally Evaporated Cu2ZnSnS4 Solar Cell,” Appl. Phys. Lett., Vol. 97, pp. 143-508 2010.
  • Rajeshmon, V. G., Poornima, N., Sudha, K. C., et al., “Modification of the Optoelectronic Properties of Sprayed In2S3 Thin Films by Indium Diffusion for Application as Buffer Layer in CZTS Based Solar Cell,” J. Alloys Comp, Vol. 553, pp. 239244 2013.
  • Peijie Lin, Lingyan Lin, Jinling Yu, Shuying Cheng, Peimin Lu and Qiao Zheng, “Numerical Simulation of Cu2ZnSnS4` Based Solar cells with In2S3 Buffer Layers by SCAPS-1D”. Journal of Applied Science and Engineering, Vol. 17, No. 4, pp. 383-390 2014.
  • Akinrinola Olusola., Ibiyemi A.A., Awodugba Ayodeji O and Faremi Abass A., “Numerical simulation of CZTS/ZnO/FTO hetero-junction solar cell”, FUOYE Journal of Pure and Applied Science. 2(1), pp 209 – 216, 2017.
  • Takashi Minemoto and Masashi Murata, “Device modelling of perovskite solar cell based on structural similarity with thin film inorganic semiconductor solar cells”, Journal of Applied Physics 116, pp. 054-505, 2014.
  • N.H. Rafat, A.M. Abdel Haleem and S.E. –D. Habib, “Numerical simulation of the limiting efficiency of the graded bandgap solar cell”, Renewable Energy Vol. 32, pp. 21 -34, 2007.
  • S.M. Sze, Physics of Semiconductor Devices, 2nd ed. John Wiley and Sons Inc. 1981. ISBN: O – 471 – O9837 – X pp.
  • Saïdou Madougou, Mohamadou Kaka and Gregoire Sissoko, “Silicon Solar Cells: Recombination and Electrical Parameters”, Solar Energy, Radu D Rugescu, IntechOpen, February 2010.
  • B.L Theraja and A.K. Theraja, A Textbook of Electrical Technology. 1999 Reprint. S. Chand and Company Ltd. 1999 ISBN: 81-219-0289-4 pp.
  • Gloeckler M., Fahrenbruch, A. L, and Sites J.R., “Numerical modelling of CIGS and CdTe Solar cells: setting the baseline”, 3rd World Conference on Photovoltaic Energy Conversion, pp. 491 – 494, 2003.
  • J. Tersoff, "Theory of semiconductor heterojunctions: The role of quantum dipoles", Physical Review, Vol. 30 (8) pp. 48-74, 1984.
  • Pallab Bhattacharya, Semiconductor Optoelectronic Devices, Prentice Hall, ISBN 0-13-495656-7 1997, pp.
  • Marc Burgelman, Johan Verschraegen, Stefan Degrave and Peter Nollet, “Modelling Thin-film PV Devices”, Prog. Photovolt: Res. Appl., ; Vol. 11, pp. 1 – 11, 2003.

On the Capacitance Spectroscopy of Cu2ZnSnS4 Typed Solar Cells Anisotype Heterojunction by SCAPS-1D

Year 2020, Volume: 6 Issue: 3, 37 - 44, 29.01.2021
https://doi.org/10.19072/ijet.627225

Abstract

One of the most reliable renewable energy source is the solar energy from the sun. However, most materials have been unable to meet their potentials as a good absorber layer in thin films. Most recently, Cu2ZnSnS4 (CZTS) have been identified as a good absorber layer, yet the same problem persists. In this study, we examined the depletion capacitance vis-a-vis the voltage and range of frequencies based on heterojunction types and structures. The modeled solar cell consisted three types of materials used as buffer layer (BL) (ZnO:Al (AZO), In2S3 (IS) and CH3NH3PbCl3 (PVKT)). The band gap model of n/n/p anisotype heterojunction for the three BLs were constructed from the obtained data of the simulated solar cells. The band offsets ∆EC and ∆EV in electron-volts at n/n for AZO, IS and PVKT are; 0.07071 and 0.18794, 0.09768 and 0.72367 and 0.67541 and 2.54541 respectively. Also, at n/p ∆EC and ∆EV for AZO, IS and PVKT are; 0.14251 and 1.93251, 0.49011 and 1.73011 and 0.34041 and 1.73920 respectively. Based on the trivial AC signal that was superimposed on the dc biased charges, AZO and IS shows an exponential response of the capacitance reliance on the voltage across the depletion region. The Capacitance spectroscopy of this solar cell showed that anisotype heterojunction may be manipulated to make use of the voltage reliance on junction capacitance when the need to electronically vary it arises.

References

  • Wang, K., Gunawan, O., Todorov, T., et al., “Thermally Evaporated Cu2ZnSnS4 Solar Cell,” Appl. Phys. Lett., Vol. 97, pp. 143-508 2010.
  • Rajeshmon, V. G., Poornima, N., Sudha, K. C., et al., “Modification of the Optoelectronic Properties of Sprayed In2S3 Thin Films by Indium Diffusion for Application as Buffer Layer in CZTS Based Solar Cell,” J. Alloys Comp, Vol. 553, pp. 239244 2013.
  • Peijie Lin, Lingyan Lin, Jinling Yu, Shuying Cheng, Peimin Lu and Qiao Zheng, “Numerical Simulation of Cu2ZnSnS4` Based Solar cells with In2S3 Buffer Layers by SCAPS-1D”. Journal of Applied Science and Engineering, Vol. 17, No. 4, pp. 383-390 2014.
  • Akinrinola Olusola., Ibiyemi A.A., Awodugba Ayodeji O and Faremi Abass A., “Numerical simulation of CZTS/ZnO/FTO hetero-junction solar cell”, FUOYE Journal of Pure and Applied Science. 2(1), pp 209 – 216, 2017.
  • Takashi Minemoto and Masashi Murata, “Device modelling of perovskite solar cell based on structural similarity with thin film inorganic semiconductor solar cells”, Journal of Applied Physics 116, pp. 054-505, 2014.
  • N.H. Rafat, A.M. Abdel Haleem and S.E. –D. Habib, “Numerical simulation of the limiting efficiency of the graded bandgap solar cell”, Renewable Energy Vol. 32, pp. 21 -34, 2007.
  • S.M. Sze, Physics of Semiconductor Devices, 2nd ed. John Wiley and Sons Inc. 1981. ISBN: O – 471 – O9837 – X pp.
  • Saïdou Madougou, Mohamadou Kaka and Gregoire Sissoko, “Silicon Solar Cells: Recombination and Electrical Parameters”, Solar Energy, Radu D Rugescu, IntechOpen, February 2010.
  • B.L Theraja and A.K. Theraja, A Textbook of Electrical Technology. 1999 Reprint. S. Chand and Company Ltd. 1999 ISBN: 81-219-0289-4 pp.
  • Gloeckler M., Fahrenbruch, A. L, and Sites J.R., “Numerical modelling of CIGS and CdTe Solar cells: setting the baseline”, 3rd World Conference on Photovoltaic Energy Conversion, pp. 491 – 494, 2003.
  • J. Tersoff, "Theory of semiconductor heterojunctions: The role of quantum dipoles", Physical Review, Vol. 30 (8) pp. 48-74, 1984.
  • Pallab Bhattacharya, Semiconductor Optoelectronic Devices, Prentice Hall, ISBN 0-13-495656-7 1997, pp.
  • Marc Burgelman, Johan Verschraegen, Stefan Degrave and Peter Nollet, “Modelling Thin-film PV Devices”, Prog. Photovolt: Res. Appl., ; Vol. 11, pp. 1 – 11, 2003.
There are 13 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Makaleler
Authors

Olusola Akınrınola 0000-0002-2538-275X

Ayodeji Awodugba This is me 0000-0002-6194-5433

Momodu Jaın This is me 0000-0002-0648-2202

Mojoyinola Awodele This is me 0000-0002-6719-8328

Omowunmi Akınrınola This is me 0000-0002-2465-221X

Abideen Ibıyemı This is me 0000-0003-0327-0471

Publication Date January 29, 2021
Acceptance Date January 28, 2021
Published in Issue Year 2020 Volume: 6 Issue: 3

Cite

APA Akınrınola, O., Awodugba, A., Jaın, M., Awodele, M., et al. (2021). On the Capacitance Spectroscopy of Cu2ZnSnS4 Typed Solar Cells Anisotype Heterojunction by SCAPS-1D. International Journal of Engineering Technologies IJET, 6(3), 37-44. https://doi.org/10.19072/ijet.627225
AMA Akınrınola O, Awodugba A, Jaın M, Awodele M, Akınrınola O, Ibıyemı A. On the Capacitance Spectroscopy of Cu2ZnSnS4 Typed Solar Cells Anisotype Heterojunction by SCAPS-1D. IJET. January 2021;6(3):37-44. doi:10.19072/ijet.627225
Chicago Akınrınola, Olusola, Ayodeji Awodugba, Momodu Jaın, Mojoyinola Awodele, Omowunmi Akınrınola, and Abideen Ibıyemı. “On the Capacitance Spectroscopy of Cu2ZnSnS4 Typed Solar Cells Anisotype Heterojunction by SCAPS-1D”. International Journal of Engineering Technologies IJET 6, no. 3 (January 2021): 37-44. https://doi.org/10.19072/ijet.627225.
EndNote Akınrınola O, Awodugba A, Jaın M, Awodele M, Akınrınola O, Ibıyemı A (January 1, 2021) On the Capacitance Spectroscopy of Cu2ZnSnS4 Typed Solar Cells Anisotype Heterojunction by SCAPS-1D. International Journal of Engineering Technologies IJET 6 3 37–44.
IEEE O. Akınrınola, A. Awodugba, M. Jaın, M. Awodele, O. Akınrınola, and A. Ibıyemı, “On the Capacitance Spectroscopy of Cu2ZnSnS4 Typed Solar Cells Anisotype Heterojunction by SCAPS-1D”, IJET, vol. 6, no. 3, pp. 37–44, 2021, doi: 10.19072/ijet.627225.
ISNAD Akınrınola, Olusola et al. “On the Capacitance Spectroscopy of Cu2ZnSnS4 Typed Solar Cells Anisotype Heterojunction by SCAPS-1D”. International Journal of Engineering Technologies IJET 6/3 (January 2021), 37-44. https://doi.org/10.19072/ijet.627225.
JAMA Akınrınola O, Awodugba A, Jaın M, Awodele M, Akınrınola O, Ibıyemı A. On the Capacitance Spectroscopy of Cu2ZnSnS4 Typed Solar Cells Anisotype Heterojunction by SCAPS-1D. IJET. 2021;6:37–44.
MLA Akınrınola, Olusola et al. “On the Capacitance Spectroscopy of Cu2ZnSnS4 Typed Solar Cells Anisotype Heterojunction by SCAPS-1D”. International Journal of Engineering Technologies IJET, vol. 6, no. 3, 2021, pp. 37-44, doi:10.19072/ijet.627225.
Vancouver Akınrınola O, Awodugba A, Jaın M, Awodele M, Akınrınola O, Ibıyemı A. On the Capacitance Spectroscopy of Cu2ZnSnS4 Typed Solar Cells Anisotype Heterojunction by SCAPS-1D. IJET. 2021;6(3):37-44.

88x31.png Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0)