BibTex RIS Cite

Multiobjective Pareto Optimal Design of a Clutch System

Year 2015, Volume: 1 Issue: 1, 26 - 43, 08.02.2015
https://doi.org/10.19072/ijet.105704

Abstract

Optimum design of a clutch and dual mass flywheel system is completed. Although the clutch systems are exposed to both rotational and axial vibrations, they are generally designed by considering rotational vibrations of engines and they do not have any component to damp axial vibrations due to the following two reasons: first, the package area of the clutch system is very limited and there is no available space to put additional springs and dampers to reduce these vibrations. Second, axial vibrations are normally insignificant to be considered in the analyses and such vibrations are supposed to be damped by the diaphragm spring and cushion springs. Nonetheless, axial vibrations may lead to some unexpected problems in the power train such as the rattle noise that is examined in this study by using global optimization techniques. The components in the clutch system are modeled analytically. Then, by considering the pedal characteristics and vibrations of pressure plate as objective functions, a multi-objective Pareto optimization problem is solved. It is shown that analytical models agree well with the experimental measurements and vibrations in the clutch system can be reduced significantly by choosing the design parameters with optimization tools.

References

  • E. Galvagno, M. Velardocchia, A. Vigliani, Dynamic and kinematic model of a dual clutch transmission, Mech. and Mach. Theory 46 (6) (2011) 794-805.
  • Manish Kulkarni, Taehyun Shim, Yi Zhang, Shift dynamics and control of dual-clutch transmissions, Mech. and Mach. Theory 42 (2) (2007) 168-182.
  • Nowshir Fatima, Par Marklund, Roland Larsson, Influence of clutch output shaft inertia and stiffness on the performance of the wet clutch, Tribol. Trans. 56 (2) (2013) 310-319.
  • Y. Zhang, X. Chen, X. Zhang, H. Jiang, W. Tobler, Dynamic modeling and simulation of a dual-clutch automated lay-shaft transmission, J. of Mech. Des. 127 (2) (2005) 302-307.
  • Q. Zheng, K. Srinivasan, G. Rizzoni, Dynamic modeling and characterization of transmission response for rontroller resign, SAE Int. 981094 (1998) doi:10.4271/981094.
  • C. Pan, J. Moskwa, Dynamic modeling and simulation of the Ford AOD automobile transmission, SAE Int. 950899 (1995) doi:10.4271/950899.
  • Z. S. Filipi, D. N. Assanis, A nonlinear, transient, single-cylinder diesel engine simulation for predictions of instantaneous engine speed and torque, J. of Eng. for Gas Turbines and Power. 123 (4) (2001) 951-959.
  • E.M. Mockensturm, E.M. Balaji, Piece-wise linear dynamic systems with one-way clutches, J. of Vib. and Acoust 127 (5) (2005) 475-482.
  • F.R. Zhu, R.G. Parker, Non-linear dynamics of a one-way clutch in belt-pulley systems, J. of Sound And Vib. 279 (1-2) (2005) 285-308.
  • T. Petrun, J. Flasker, M.A. Kegl, Friction model for dynamic analyses of multi-body systems with a fully functional friction clutch, J. of Multibody Dyn. 227 (2) (2012) 89-105.
  • A. R. Crowther, N. Zhang, Torsional finite elements and nonlinear numerical modelling in vehicle powertrain dynamics, J. of Sound and Vib. 284 (3) (2005) 825-849.
  • C. Duan, R. Singh, Influence of harmonically varying normal load on steady-state behavior of a 2dof torsional system with dry friction, J. of Sound and Vib. 294 (3) (2006) 503-528.
  • C. Duan, R. Singh, Dynamics of a 3dof torsional system with a dry friction controlled path, J. of Sound and Vib. 289 (4) (2006) 657-688.
  • C. Padmanabhan, R. Singh, Influence of clutch design on the reduction and perception of automotive transmission rattle noise, Noise-Con 93 (1993) 607-612.
  • H. Moradi, H. Salarieh, Analysis of nonlinear oscillations in spur gear pairs with approximated modelling of backlash nonlinearity, Mech. and Mach. Theory 51 (2012) 14-31.
  • T. C. Kim, T. E. Rook, R. Singh, Super - and sub-harmonic response calculations for a torsional system with clearance nonlinearity using the harmonic balance method, J. of Sound and Vib. 281 (3) (2005) 965-993.
  • T. C. Kim, T. E. Rook, R. Singh, Effect of nonlinear impact damping on the frequency response of a torsional system with clearance, J. of Sound and Vib. 281 (3) (2005) 995-1021.
  • J. Awrejcewicz, D. Grzelczyk, Modeling and analytical/numerical analysis of wear processes in a mechanical friction clutch, Inter. J. of Bifurc. and Chaos 21 (10) (2011) 2861-2869.
  • W. Zhang, G. Zhu, Research and application of PSO algorithm for the diaphragm spring optimization, Forth Inter. Conf. on Nat. Comput. (2008) 549-553.
  • W. Yong-hai, Multi-objective optimization design of vehicle clutch diaphragm spring, Second Inter. Conf. on Intell. Comput. Technol. and Autom. (2009) 194-197.
  • X. Guo, H. Lu, Optimal design on diaphragm spring of automobile clutch, Second Inter. Conf. on Intell. Comput. Technol. and Autom. (2009) 206-208.
  • A. Li-jun, L. Tao, S. Bao-yu, Optimum design of automobile diaphragm spring clutch, IEEE Veh. Power and Propuls. Conf. (2008) 1-4.
  • G. Ercole, G. Mattiazzo, S. Mauro, M. Velardocchia, F. Amisano, G. Serra, Experimental methodologies to determine diaphragm spring clutch characteristics, SAE Int. (2000) 10.4271/2000-01-1151.
  • W. Nam, C. Lee, Y. Chai, J. Kwon, Finite element analysis and optimal design of automobile clutch diaphragm spring, SAE Int. (2000) 2000-05-0125.
  • W. Jin, Solid modeling and finite element analysis of diaphragm spring clutch, Manag., Manuf. and Mater. Eng 452-453 (2012) 258-263.
  • .J. O. Almen, A. Laszlo, The uniform section disk spring, ASME 58 (1936) 305-314.
  • G. Wempner, Axisymmetric deflections of shallow conical shells, J. of Eng. Mech. 90 (2) (1964) 181–194.
  • G. Curti, M. A. Orlando, New Calculation of Coned Annular Disk Spring, ASME Winter Annual Meet. (1976).
  • Y. Zhiming, Y. Kaiyuan. A Study of Belleville Spring and Diaphragm Spring in Engineering. J. of Appl. Mech. 57 (4) (1990) 1026-1031.
  • S. Ozaki, K. Tsuda, J. Tominaga, Analyses of static and dynamic behavior of coned disk springs: effects of friction boundaries, Thin-Walled Struct. 59 (2012) 132-143
  • E. Fromm, W. Kleiner, Handbook for Disc Springs, Heilbronn, SCHNORR, 2003.
  • J. E. Shigley, C. Mischke, Standart Handbook of Machine Design, third ed., McGraw-Hill, San Francisco, 2004.
  • R. Esfahani, A. Farshidianfar, A. Shahrjerdi, F. Mustapha, Longitudinal vibrations analysis of vehicular clutch, Aust. J. of Basic and Appl. Sci. 3 (4) (2009) 3633-3641.
  • R. Singh, H. Xie, R. J. Comparin, Analysis of automotive neutral gear rattle, J. of Sound and Vib. 131 (2) 1989 177-196.
  • S. Theodossiade, O. Tangasawi, H. Rahnejat, Gear teeth impacts in hydrodynamic conjunctions promoting idle gear rattle, J. of Sound and Vib. 303 (3) (2007) 632-658.
  • E. Rocca, R. Russo, Theoretical and experimental investigation into the influence of the periodic backlash fluctuations on the gear rattle, J. of Sound and Vib. 330 (20) (2011) 4738-4752.
  • Y. Kadmiri, E. Rigaud, J. P. Laudet, L. Vary, Experimental and numerical analysis of automotive gearbox rattle noise, J. of Sound and Vib. 331 (13) (2012) 3144-3157.
  • M. Barthod, B. Hayne, J. L. Tebec, J. C. Pin, Experimental study of gear rattle excited by a multi-harmonic excitation, Appl. Acoust. 68 (9) (2007) 1003-1025.
  • X. Wang, B. L. B. Gadegbeku, L. Bouzon, Biomechanical evaluation of the comfort of automobile clutch pedal operation, Int. J. of Ind. Ergon. 34 (3) (2004) 209-221.
  • A. Shabibi, Solution of heat conduction problem in automotive clutch and brake systems, Proc. of 2008 ASME Summer Heat Transf. Conf. 321 (2008).
  • A. R. Crowther, C. Janello, R. Singh, Quantification of clearance-induced impulsive sources in a torsional system, J. of Sound and Vib. 307 (3-5) (2007) 428-451.
  • C. Duan, R. Singh, Super-harmonics in a torsional system with dry friction path subject to harmonic excitation under a mean torque, J. of Sound and Vib. 285 (4-5) (2005) 803-834.
  • W. Reik, The self-adjusting clutch – SAC, 05th LuK Symp. (1994) 43-62.
  • K. L. Kimming The Self-Adjusting Clutch SAC of the 2nd Generation, LuK Symp. (1998) 5-22.
  • R. Shaver, Manual Transmission Clutch System, first ed., Warrendale: SAE, (1997), p: 28, 59-63.
  • A. Reitz, J. W. Biermann, P. Kelly, Special Test Bench to Investigate NVH Phenomena of the Clutch System, Inst. für Kraftfahrwesen Aachen
  • P. Kelly, H. Rahnejat, Clutch Pedal Dynamic Noise and Vibration Investigation, Proc. of the 1st Int. Symp. on Multi-Body Dyn.: Monit. and Simul. Tech., Bradford, UK, MEP Press, 1997
  • T. Hasabe, U. A. Seiki, Experimental Study of Reduction Methods for Clutch Pedal Vibration and Drive Train Rattling Noise from Clutch System, SAE Int. 932007 (1993). doi:10.4271/932007
  • M. Özbakış, Observation and optimization of the characteristic of the diaphragm springs used in clutch systems, Master Thesis, Dokuz Eylül University, Turkey, 2008.
  • A. Hagerodt, F. Küçükay, Optimum Design of Return and Cushion Springs for Automatic Transmission Clutches, SAE Int. 2001-01-870 (2001)
  • V. Arora, G. Bhushan, M. L. Aggarwal, Eye Design Analysis of Single Leaf Spring in Automotive Vehicles Using CAE Tools, Int. J. of App. Eng. And Tech. 1 (1) (2011) 88-97.
  • V. Arora, M. L. Aggarwal, G. Bhushan, A Comparative Study of CAE and Experimental Results of Leaf Springs in Automotive Vehicles, Int. J. of Eng. Sci. and Tech. 3 (9) (2011) 6856-6866.
  • Genetic Algorithm and Direct Search Toolbox™ User’s Guide, Natick, The MathWorks, Inc, (2009), p:48.
Year 2015, Volume: 1 Issue: 1, 26 - 43, 08.02.2015
https://doi.org/10.19072/ijet.105704

Abstract

References

  • E. Galvagno, M. Velardocchia, A. Vigliani, Dynamic and kinematic model of a dual clutch transmission, Mech. and Mach. Theory 46 (6) (2011) 794-805.
  • Manish Kulkarni, Taehyun Shim, Yi Zhang, Shift dynamics and control of dual-clutch transmissions, Mech. and Mach. Theory 42 (2) (2007) 168-182.
  • Nowshir Fatima, Par Marklund, Roland Larsson, Influence of clutch output shaft inertia and stiffness on the performance of the wet clutch, Tribol. Trans. 56 (2) (2013) 310-319.
  • Y. Zhang, X. Chen, X. Zhang, H. Jiang, W. Tobler, Dynamic modeling and simulation of a dual-clutch automated lay-shaft transmission, J. of Mech. Des. 127 (2) (2005) 302-307.
  • Q. Zheng, K. Srinivasan, G. Rizzoni, Dynamic modeling and characterization of transmission response for rontroller resign, SAE Int. 981094 (1998) doi:10.4271/981094.
  • C. Pan, J. Moskwa, Dynamic modeling and simulation of the Ford AOD automobile transmission, SAE Int. 950899 (1995) doi:10.4271/950899.
  • Z. S. Filipi, D. N. Assanis, A nonlinear, transient, single-cylinder diesel engine simulation for predictions of instantaneous engine speed and torque, J. of Eng. for Gas Turbines and Power. 123 (4) (2001) 951-959.
  • E.M. Mockensturm, E.M. Balaji, Piece-wise linear dynamic systems with one-way clutches, J. of Vib. and Acoust 127 (5) (2005) 475-482.
  • F.R. Zhu, R.G. Parker, Non-linear dynamics of a one-way clutch in belt-pulley systems, J. of Sound And Vib. 279 (1-2) (2005) 285-308.
  • T. Petrun, J. Flasker, M.A. Kegl, Friction model for dynamic analyses of multi-body systems with a fully functional friction clutch, J. of Multibody Dyn. 227 (2) (2012) 89-105.
  • A. R. Crowther, N. Zhang, Torsional finite elements and nonlinear numerical modelling in vehicle powertrain dynamics, J. of Sound and Vib. 284 (3) (2005) 825-849.
  • C. Duan, R. Singh, Influence of harmonically varying normal load on steady-state behavior of a 2dof torsional system with dry friction, J. of Sound and Vib. 294 (3) (2006) 503-528.
  • C. Duan, R. Singh, Dynamics of a 3dof torsional system with a dry friction controlled path, J. of Sound and Vib. 289 (4) (2006) 657-688.
  • C. Padmanabhan, R. Singh, Influence of clutch design on the reduction and perception of automotive transmission rattle noise, Noise-Con 93 (1993) 607-612.
  • H. Moradi, H. Salarieh, Analysis of nonlinear oscillations in spur gear pairs with approximated modelling of backlash nonlinearity, Mech. and Mach. Theory 51 (2012) 14-31.
  • T. C. Kim, T. E. Rook, R. Singh, Super - and sub-harmonic response calculations for a torsional system with clearance nonlinearity using the harmonic balance method, J. of Sound and Vib. 281 (3) (2005) 965-993.
  • T. C. Kim, T. E. Rook, R. Singh, Effect of nonlinear impact damping on the frequency response of a torsional system with clearance, J. of Sound and Vib. 281 (3) (2005) 995-1021.
  • J. Awrejcewicz, D. Grzelczyk, Modeling and analytical/numerical analysis of wear processes in a mechanical friction clutch, Inter. J. of Bifurc. and Chaos 21 (10) (2011) 2861-2869.
  • W. Zhang, G. Zhu, Research and application of PSO algorithm for the diaphragm spring optimization, Forth Inter. Conf. on Nat. Comput. (2008) 549-553.
  • W. Yong-hai, Multi-objective optimization design of vehicle clutch diaphragm spring, Second Inter. Conf. on Intell. Comput. Technol. and Autom. (2009) 194-197.
  • X. Guo, H. Lu, Optimal design on diaphragm spring of automobile clutch, Second Inter. Conf. on Intell. Comput. Technol. and Autom. (2009) 206-208.
  • A. Li-jun, L. Tao, S. Bao-yu, Optimum design of automobile diaphragm spring clutch, IEEE Veh. Power and Propuls. Conf. (2008) 1-4.
  • G. Ercole, G. Mattiazzo, S. Mauro, M. Velardocchia, F. Amisano, G. Serra, Experimental methodologies to determine diaphragm spring clutch characteristics, SAE Int. (2000) 10.4271/2000-01-1151.
  • W. Nam, C. Lee, Y. Chai, J. Kwon, Finite element analysis and optimal design of automobile clutch diaphragm spring, SAE Int. (2000) 2000-05-0125.
  • W. Jin, Solid modeling and finite element analysis of diaphragm spring clutch, Manag., Manuf. and Mater. Eng 452-453 (2012) 258-263.
  • .J. O. Almen, A. Laszlo, The uniform section disk spring, ASME 58 (1936) 305-314.
  • G. Wempner, Axisymmetric deflections of shallow conical shells, J. of Eng. Mech. 90 (2) (1964) 181–194.
  • G. Curti, M. A. Orlando, New Calculation of Coned Annular Disk Spring, ASME Winter Annual Meet. (1976).
  • Y. Zhiming, Y. Kaiyuan. A Study of Belleville Spring and Diaphragm Spring in Engineering. J. of Appl. Mech. 57 (4) (1990) 1026-1031.
  • S. Ozaki, K. Tsuda, J. Tominaga, Analyses of static and dynamic behavior of coned disk springs: effects of friction boundaries, Thin-Walled Struct. 59 (2012) 132-143
  • E. Fromm, W. Kleiner, Handbook for Disc Springs, Heilbronn, SCHNORR, 2003.
  • J. E. Shigley, C. Mischke, Standart Handbook of Machine Design, third ed., McGraw-Hill, San Francisco, 2004.
  • R. Esfahani, A. Farshidianfar, A. Shahrjerdi, F. Mustapha, Longitudinal vibrations analysis of vehicular clutch, Aust. J. of Basic and Appl. Sci. 3 (4) (2009) 3633-3641.
  • R. Singh, H. Xie, R. J. Comparin, Analysis of automotive neutral gear rattle, J. of Sound and Vib. 131 (2) 1989 177-196.
  • S. Theodossiade, O. Tangasawi, H. Rahnejat, Gear teeth impacts in hydrodynamic conjunctions promoting idle gear rattle, J. of Sound and Vib. 303 (3) (2007) 632-658.
  • E. Rocca, R. Russo, Theoretical and experimental investigation into the influence of the periodic backlash fluctuations on the gear rattle, J. of Sound and Vib. 330 (20) (2011) 4738-4752.
  • Y. Kadmiri, E. Rigaud, J. P. Laudet, L. Vary, Experimental and numerical analysis of automotive gearbox rattle noise, J. of Sound and Vib. 331 (13) (2012) 3144-3157.
  • M. Barthod, B. Hayne, J. L. Tebec, J. C. Pin, Experimental study of gear rattle excited by a multi-harmonic excitation, Appl. Acoust. 68 (9) (2007) 1003-1025.
  • X. Wang, B. L. B. Gadegbeku, L. Bouzon, Biomechanical evaluation of the comfort of automobile clutch pedal operation, Int. J. of Ind. Ergon. 34 (3) (2004) 209-221.
  • A. Shabibi, Solution of heat conduction problem in automotive clutch and brake systems, Proc. of 2008 ASME Summer Heat Transf. Conf. 321 (2008).
  • A. R. Crowther, C. Janello, R. Singh, Quantification of clearance-induced impulsive sources in a torsional system, J. of Sound and Vib. 307 (3-5) (2007) 428-451.
  • C. Duan, R. Singh, Super-harmonics in a torsional system with dry friction path subject to harmonic excitation under a mean torque, J. of Sound and Vib. 285 (4-5) (2005) 803-834.
  • W. Reik, The self-adjusting clutch – SAC, 05th LuK Symp. (1994) 43-62.
  • K. L. Kimming The Self-Adjusting Clutch SAC of the 2nd Generation, LuK Symp. (1998) 5-22.
  • R. Shaver, Manual Transmission Clutch System, first ed., Warrendale: SAE, (1997), p: 28, 59-63.
  • A. Reitz, J. W. Biermann, P. Kelly, Special Test Bench to Investigate NVH Phenomena of the Clutch System, Inst. für Kraftfahrwesen Aachen
  • P. Kelly, H. Rahnejat, Clutch Pedal Dynamic Noise and Vibration Investigation, Proc. of the 1st Int. Symp. on Multi-Body Dyn.: Monit. and Simul. Tech., Bradford, UK, MEP Press, 1997
  • T. Hasabe, U. A. Seiki, Experimental Study of Reduction Methods for Clutch Pedal Vibration and Drive Train Rattling Noise from Clutch System, SAE Int. 932007 (1993). doi:10.4271/932007
  • M. Özbakış, Observation and optimization of the characteristic of the diaphragm springs used in clutch systems, Master Thesis, Dokuz Eylül University, Turkey, 2008.
  • A. Hagerodt, F. Küçükay, Optimum Design of Return and Cushion Springs for Automatic Transmission Clutches, SAE Int. 2001-01-870 (2001)
  • V. Arora, G. Bhushan, M. L. Aggarwal, Eye Design Analysis of Single Leaf Spring in Automotive Vehicles Using CAE Tools, Int. J. of App. Eng. And Tech. 1 (1) (2011) 88-97.
  • V. Arora, M. L. Aggarwal, G. Bhushan, A Comparative Study of CAE and Experimental Results of Leaf Springs in Automotive Vehicles, Int. J. of Eng. Sci. and Tech. 3 (9) (2011) 6856-6866.
  • Genetic Algorithm and Direct Search Toolbox™ User’s Guide, Natick, The MathWorks, Inc, (2009), p:48.
There are 53 citations in total.

Details

Primary Language English
Journal Section Makaleler
Authors

Onur Ozansoy

Talat Tevruz

Ata Mugan

Publication Date February 8, 2015
Published in Issue Year 2015 Volume: 1 Issue: 1

Cite

APA Ozansoy, O., Tevruz, T., & Mugan, A. (2015). Multiobjective Pareto Optimal Design of a Clutch System. International Journal of Engineering Technologies IJET, 1(1), 26-43. https://doi.org/10.19072/ijet.105704
AMA Ozansoy O, Tevruz T, Mugan A. Multiobjective Pareto Optimal Design of a Clutch System. IJET. March 2015;1(1):26-43. doi:10.19072/ijet.105704
Chicago Ozansoy, Onur, Talat Tevruz, and Ata Mugan. “Multiobjective Pareto Optimal Design of a Clutch System”. International Journal of Engineering Technologies IJET 1, no. 1 (March 2015): 26-43. https://doi.org/10.19072/ijet.105704.
EndNote Ozansoy O, Tevruz T, Mugan A (March 1, 2015) Multiobjective Pareto Optimal Design of a Clutch System. International Journal of Engineering Technologies IJET 1 1 26–43.
IEEE O. Ozansoy, T. Tevruz, and A. Mugan, “Multiobjective Pareto Optimal Design of a Clutch System”, IJET, vol. 1, no. 1, pp. 26–43, 2015, doi: 10.19072/ijet.105704.
ISNAD Ozansoy, Onur et al. “Multiobjective Pareto Optimal Design of a Clutch System”. International Journal of Engineering Technologies IJET 1/1 (March 2015), 26-43. https://doi.org/10.19072/ijet.105704.
JAMA Ozansoy O, Tevruz T, Mugan A. Multiobjective Pareto Optimal Design of a Clutch System. IJET. 2015;1:26–43.
MLA Ozansoy, Onur et al. “Multiobjective Pareto Optimal Design of a Clutch System”. International Journal of Engineering Technologies IJET, vol. 1, no. 1, 2015, pp. 26-43, doi:10.19072/ijet.105704.
Vancouver Ozansoy O, Tevruz T, Mugan A. Multiobjective Pareto Optimal Design of a Clutch System. IJET. 2015;1(1):26-43.

Cited By

Topology optimization of clutch drive plate for commercial vehicles
International Journal of Automotive Engineering and Technologies
Özgür ERDOĞAN
https://doi.org/10.18245/ijaet.821855

88x31.png Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0)