Research Article
BibTex RIS Cite

Mathematical Optimization of Monte Carlo Simulation Parameters for Predicting Stock Prices

Year 2024, Volume: 9 Issue: 3, 84 - 88
https://doi.org/10.19072/ijet.1569085

Abstract

Stock price prediction holds paramount significance for individual investors, guiding crucial decisions in financial planning and investment strategies. This research delves into the methodology of Monte Carlo simulation, a versatile tool in financial modeling, to assess its advantages and disadvantages in the context of predicting stock prices. The study employs Python code to demonstrate the step-by-step implementation of Monte Carlo simulations, emphasizing the mathematical optimization of parameters for enhanced accuracy. Results showcase a characteristic bell curve, offering a probabilistic perspective on potential outcomes. Comparative analyses with other forecasting models, such as graphic analysis, underscore the superior reliability of Monte Carlo simulation in evaluating risks and rewards. Furthermore, the paper explores the application of Monte Carlo simulation in real-world scenarios, such as portfolio optimization and retirement planning, highlighting its pragmatic value for individual investors navigating the complexities of the stock market. The research concludes by acknowledging the limitations of the approach and advocating for a comprehensive consideration of all relevant factors in financial decision-making. This exploration serves as a valuable resource for individual investors seeking informed insights into probabilistic forecasting methods for effective stock price predictions.

References

  • [1] B. Mandelbrot, “The variation of certain speculative prices”, The Journal of Business, 1963.36(4), 394-419.
  • [2] E.F. Fama, “Efficient capital markets: A review of theory and empirical work”, The Journal of Finance, 1970. 25(2), 383-417.
  • [3] E.F. Fama, “The behavior of stock-market prices”, The Journal of Business,1965. 38(1), 34-105.
  • [4] P. Glasserman, “Monte Carlo Methods in Financial Engineering”, Springer Publication. 2003
  • [5] P.P. Boyle, D.C. Emanuel, and V.E. Sandorf, “Options on the maximum or minimum of several assets”, Journal of Financial Economics,1977. 5(2), 267-288.
  • [6] A, Ghalanos, and S. Theussl, “Simulations for Monte Carlo Methods Using simecol”, Journal of Statistical Software, 51(5), 1-31.2012.
  • [7] J. B. Long, A. A.Lyubushin, and E. Perduofeva, “Financial Modeling Using Monte Carlo Simulation”, R. John Wiley & Sons Publication, 2014.
  • [8] L. Clewlow, and C. Strickland, “Implementing Derivatives Models”, R. John Wiley & Sons Publication, 1999
  • [9] A. Lo, and A. MacKinlay, “Stock market prices do not follow random walks: Evidence from a simple specification test”, Review of Financial Studies,1988. 1(1), 41-66.
  • [10] J. Murphy, “Technical Analysis of the Financial Markets: A Comprehensive Guide to Trading Methods and Applications”, Penguin Publication, 1999.
  • [11] A. Lapan, and S. Rezende, “Financial Modeling with Python” Packt Publishing, 2015.
  • [12] L. Chen, C. Zhu, and Y. Xie, “Financial Modeling and Simulation of Big Data”, Information, 2020. 11(5), 235.
  • [13] L. Andersen, and V. Piterbarg, “Interest Rate Modeling”, Atlantic Financial Press, 2010.
  • [14] B. Malkiel, “The Efficient Market Hypothesis and Its Critics”, Journal of Economic Perspectives, 2003. 17(1), 59-82.
  • [15] A. McNeil, R. Frey, and P. Embrechts, “Quantitative Risk Management: Concepts, Techniques, and Tools”, Princeton University Press, 2005.

Borsa Fiyat Tahmini İçin Monte Carlo Simülasyonu Parametrelerinin Matematiksel Optimizasyonu

Year 2024, Volume: 9 Issue: 3, 84 - 88
https://doi.org/10.19072/ijet.1569085

Abstract

Borsa fiyat tahmini, bireysel yatırımcılar için büyük bir öneme sahiptir ve finansal planlama ile yatırım stratejilerinde önemli kararları yönlendirir. Bu araştırma, borsa fiyatlarını tahmin etme bağlamında Monte Carlo simülasyon metodolojisini inceleyerek, bu çok yönlü finansal modelleme aracının avantajlarını ve dezavantajlarını değerlendirir. Çalışmada, Monte Carlo simülasyonlarının adım adım uygulanışını gösteren Python kodu kullanılarak, parametrelerin matematiksel optimizasyonu vurgulanmakta ve daha yüksek doğruluk sağlanmaktadır. Sonuçlar, olası sonuçlara ilişkin olasılıksal bir bakış sunan karakteristik bir çan eğrisini ortaya koymaktadır. Grafik analiz gibi diğer tahmin modelleriyle yapılan karşılaştırmalı analizler, Monte Carlo simülasyonunun riskleri ve ödülleri değerlendirmede daha güvenilir olduğunu göstermektedir. Ayrıca, bu makale Monte Carlo simülasyonunun portföy optimizasyonu ve emeklilik planlaması gibi gerçek dünya senaryolarında uygulanmasını inceleyerek, bireysel yatırımcılar için borsanın karmaşıklıklarında pragmatik bir değer sunduğunu vurgulamaktadır. Araştırma, yöntemin sınırlamalarını kabul ederek finansal karar verme süreçlerinde tüm ilgili faktörlerin kapsamlı bir şekilde değerlendirilmesini savunarak sona ermektedir. Bu inceleme, etkili borsa fiyat tahminleri için olasılıksal tahmin yöntemlerine dair bilgilendirici içgörüler arayan bireysel yatırımcılar için değerli bir kaynak sunmaktadır.

References

  • [1] B. Mandelbrot, “The variation of certain speculative prices”, The Journal of Business, 1963.36(4), 394-419.
  • [2] E.F. Fama, “Efficient capital markets: A review of theory and empirical work”, The Journal of Finance, 1970. 25(2), 383-417.
  • [3] E.F. Fama, “The behavior of stock-market prices”, The Journal of Business,1965. 38(1), 34-105.
  • [4] P. Glasserman, “Monte Carlo Methods in Financial Engineering”, Springer Publication. 2003
  • [5] P.P. Boyle, D.C. Emanuel, and V.E. Sandorf, “Options on the maximum or minimum of several assets”, Journal of Financial Economics,1977. 5(2), 267-288.
  • [6] A, Ghalanos, and S. Theussl, “Simulations for Monte Carlo Methods Using simecol”, Journal of Statistical Software, 51(5), 1-31.2012.
  • [7] J. B. Long, A. A.Lyubushin, and E. Perduofeva, “Financial Modeling Using Monte Carlo Simulation”, R. John Wiley & Sons Publication, 2014.
  • [8] L. Clewlow, and C. Strickland, “Implementing Derivatives Models”, R. John Wiley & Sons Publication, 1999
  • [9] A. Lo, and A. MacKinlay, “Stock market prices do not follow random walks: Evidence from a simple specification test”, Review of Financial Studies,1988. 1(1), 41-66.
  • [10] J. Murphy, “Technical Analysis of the Financial Markets: A Comprehensive Guide to Trading Methods and Applications”, Penguin Publication, 1999.
  • [11] A. Lapan, and S. Rezende, “Financial Modeling with Python” Packt Publishing, 2015.
  • [12] L. Chen, C. Zhu, and Y. Xie, “Financial Modeling and Simulation of Big Data”, Information, 2020. 11(5), 235.
  • [13] L. Andersen, and V. Piterbarg, “Interest Rate Modeling”, Atlantic Financial Press, 2010.
  • [14] B. Malkiel, “The Efficient Market Hypothesis and Its Critics”, Journal of Economic Perspectives, 2003. 17(1), 59-82.
  • [15] A. McNeil, R. Frey, and P. Embrechts, “Quantitative Risk Management: Concepts, Techniques, and Tools”, Princeton University Press, 2005.
There are 15 citations in total.

Details

Primary Language English
Subjects Applied Statistics
Journal Section Makaleler
Authors

Sajedeh Norozpour 0000-0003-3542-1932

Early Pub Date January 24, 2025
Publication Date
Submission Date October 17, 2024
Acceptance Date December 16, 2024
Published in Issue Year 2024 Volume: 9 Issue: 3

Cite

APA Norozpour, S. (2025). Mathematical Optimization of Monte Carlo Simulation Parameters for Predicting Stock Prices. International Journal of Engineering Technologies IJET, 9(3), 84-88. https://doi.org/10.19072/ijet.1569085
AMA Norozpour S. Mathematical Optimization of Monte Carlo Simulation Parameters for Predicting Stock Prices. IJET. January 2025;9(3):84-88. doi:10.19072/ijet.1569085
Chicago Norozpour, Sajedeh. “Mathematical Optimization of Monte Carlo Simulation Parameters for Predicting Stock Prices”. International Journal of Engineering Technologies IJET 9, no. 3 (January 2025): 84-88. https://doi.org/10.19072/ijet.1569085.
EndNote Norozpour S (January 1, 2025) Mathematical Optimization of Monte Carlo Simulation Parameters for Predicting Stock Prices. International Journal of Engineering Technologies IJET 9 3 84–88.
IEEE S. Norozpour, “Mathematical Optimization of Monte Carlo Simulation Parameters for Predicting Stock Prices”, IJET, vol. 9, no. 3, pp. 84–88, 2025, doi: 10.19072/ijet.1569085.
ISNAD Norozpour, Sajedeh. “Mathematical Optimization of Monte Carlo Simulation Parameters for Predicting Stock Prices”. International Journal of Engineering Technologies IJET 9/3 (January 2025), 84-88. https://doi.org/10.19072/ijet.1569085.
JAMA Norozpour S. Mathematical Optimization of Monte Carlo Simulation Parameters for Predicting Stock Prices. IJET. 2025;9:84–88.
MLA Norozpour, Sajedeh. “Mathematical Optimization of Monte Carlo Simulation Parameters for Predicting Stock Prices”. International Journal of Engineering Technologies IJET, vol. 9, no. 3, 2025, pp. 84-88, doi:10.19072/ijet.1569085.
Vancouver Norozpour S. Mathematical Optimization of Monte Carlo Simulation Parameters for Predicting Stock Prices. IJET. 2025;9(3):84-8.

88x31.png Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0)