Research Article
BibTex RIS Cite

PROGNOSTIC VALUE OF DYNAMIC THIOL-DISULFIDE HOMEOSTASIS IN PREDICTING HOSPITAL MORTALITY IN HYPOXEMIC RESPIRATORY FAILURE

Year 2022, Volume: 7 Issue: 2, 138 - 145, 29.08.2022
https://doi.org/10.33457/ijhsrp.950523

Abstract

Hypoxemic respiratory failure (HRF) has a PaO2 < 60 mmHg with normal or subnormal PaCO2. The gas exchange is impaired at the level of the alveolo-capillary membrane. HRF is associated with high mortality in hospital, and there is no diagnostic laboratory test to predict this mortality. This study evaluates the possibility of predicting mortality in HRF patients with dynamic thiol-disulfide homeostasis parameters, which are indicators of oxidation state. Sixty-two patients with HRF and 40 healthy controls were included in the study. Dynamic thiol-disulfide parameters were studied from the serum of all participants. Total and native thiol levels were significantly lower in the patients than in the controls (p < 0.05). Disulfide levels were higher in patients who died than survivors (p <0.01). The logistic regression analysis determined that the rise in disulfide values increased the mortality risk 1.57 times. Progressive hypoxemia increases oxidation. Serum disulfide level is a valuable parameter in predicting mortality in hypoxemia.

Supporting Institution

Scientific Research Projects Unit of Kirsehir Ahi Evran University

Project Number

TIP.A4.19.004

Thanks

Scientific Research Projects Unit of Kirsehir Ahi Evran University

References

  • Gurka, D. P., and Balk, R. A., "Acute respiratory failure," Critical Care Medicine, pp. 773-794: Elsevier, 2008.
  • Roussos, C., and Koutsoukou, A., “Respiratory failure”, European Respiratory Journal, 22 (47 suppl), 3s-14s, 2003.
  • Radovanovic, D., Rizzi, M., Pini, S., Saad, M., Chiumello, D. A., and Santus, P., “Helmet CPAP to treat acute hypoxemic respiratory failure in patients with COVID-19: a management strategy proposal”, Journal of clinical medicine, 9 (4), 1191, 2020.
  • Vincent, J.-L., Akça, S., De Mendonça, A., Haji-Michael, P., Sprung, C., Moreno, R., Antonelli, M., Suter, P. M., and Group, S. W., “The epidemiology of acute respiratory failure in critically ill patients”, Chest, 121 (5), 1602-1609, 2002.
  • Kelley, M. A., Manaker, S., and Finlay, G., “Predictive scoring systems in the intensive care unit”, UpToDate. Available at: URL: http://www. uptodate. com/online/content/author. do, 2012.
  • Askew, E., “Work at high altitude and oxidative stress: antioxidant nutrients”, Toxicology, 180 (2), 107-119, 2002.
  • Prabhakar, N. R., and Kumar, G. K., “Oxidative stress in the systemic and cellular responses to intermittent hypoxia”, Biological chemistry, 385 (3-4), 217-221, 2004.
  • McGarry, T., Biniecka, M., Veale, D. J., and Fearon, U., “Hypoxia, oxidative stress and inflammation”, Free Radical Biology and Medicine, 125, 15-24, 2018.
  • Deneke, S. M., “Thiol-based antioxidants”, Curr Top Cell Regul, 36 (151-180), 447, 2000.
  • Erel, Ö., and Erdoğan, S., “Thiol Disulfide Homeostasis: An Integrated Approach with Biochemical and Clinical Aspects”, Turkish Journal of Medical Sciences, 2020.
  • Erel, O., and Neselioglu, S., “A novel and automated assay for thiol/disulphide homeostasis”, Clinical biochemistry, 47 (18), 326-332, 2014.
  • Circu, M. L., and Aw, T. Y., “Reactive oxygen species, cellular redox systems, and apoptosis”, Free Radical Biology and Medicine, 48 (6), 749-762, 2010.
  • Clanton, T. L., “Hypoxia-induced reactive oxygen species formation in skeletal muscle”, Journal of Applied Physiology, 102 (6), 2379-2388, 2007.
  • Paardekooper, L. M., van Vroonhoven, E., ter Beest, M., and van den Bogaart, G., “Radical Stress Is More Cytotoxic in the Nucleus than in Other Organelles”, International journal of molecular sciences, 20 (17), 4147, 2019.
  • Bowler, E., and Ladomery, M. R., "Working with Hypoxia," Redox-Mediated Signal Transduction, pp. 109-133: Springer, 2019.
  • Frijhoff, J., Winyard, P. G., Zarkovic, N., Davies, S. S., Stocker, R., Cheng, D., Knight, A. R., Taylor, E. L., Oettrich, J., and Ruskovska, T., “Clinical relevance of biomarkers of oxidative stress”, Antioxidants & redox signaling, 23 (14), 1144-1170, 2015.
  • Bernard, O., Jeny, F., Uzunhan, Y., Dondi, E., Terfous, R., Label, R., Sutton, A., Larghero, J., Vanneaux, V., and Nunes, H., “Mesenchymal stem cells reduce hypoxia-induced apoptosis in alveolar epithelial cells by modulating HIF and ROS hypoxic signaling”, American Journal of Physiology-Lung Cellular and Molecular Physiology, 314 (3), L360-L371, 2018.
  • Yadav, S., Kalra, N., Ganju, L., and Singh, M., “Activator protein-1 (AP-1): a bridge between life and death in lung epithelial (A549) cells under hypoxia”, Molecular and cellular biochemistry, 436 (1-2), 99-110, 2017.
  • Møller, P., Loft, S., Lundby, C., and Olsen, N. V., “Acute hypoxia and hypoxic exercise induce DNA strand breaks and oxidative DNA damage in humans”, The FASEB Journal, 15 (7), 1181-1186, 2001.
  • Ilavazhagan, G., Bansal, A., Prasad, D., Thomas, P., Sharma, S., Kain, A., Kumar, D., and Selvamurthy, W., “Effect of vitamin E supplementation on hypoxia-induced oxidative damage in male albino rats”, Aviation, space, and environmental medicine, 72 (10), 899-903, 2001.
  • Li, N., Li, Q., Bai, J., Chen, K., Yang, H., Wang, W., Fan, F., Zhang, Y., Meng, X., and Kuang, T., “The multiple organs insult and compensation mechanism in mice exposed to hypobaric hypoxia”, CELL STRESS & CHAPERONES, 2020.
  • Hernansanz-Agustín, P., Izquierdo-Álvarez, A., Sánchez-Gómez, F. J., Ramos, E., Villa-Piña, T., Lamas, S., Bogdanova, A., and Martínez-Ruiz, A., “Acute hypoxia produces a superoxide burst in cells”, Free radical biology and medicine, 71, 146-156, 2014.
  • Dröge, W., “Free Radicals in the Physiological Control of Cell Function”, Physiological Reviews, 82 (1), 47-95, 2002.
  • Ketcham, S. W., Sedhai, Y. R., Miller, H. C., Bolig, T. C., Ludwig, A., Claar, D., McSparron, J. I., Prescott, H. C., and Sjoding, M. W., “Causes and characteristics of death in patients with acute hypoxemic respiratory failure and acute respiratory distress syndrome: a retrospective cohort study”, Critical Care, 24 (1), 1-9, 2020.
Year 2022, Volume: 7 Issue: 2, 138 - 145, 29.08.2022
https://doi.org/10.33457/ijhsrp.950523

Abstract

Project Number

TIP.A4.19.004

References

  • Gurka, D. P., and Balk, R. A., "Acute respiratory failure," Critical Care Medicine, pp. 773-794: Elsevier, 2008.
  • Roussos, C., and Koutsoukou, A., “Respiratory failure”, European Respiratory Journal, 22 (47 suppl), 3s-14s, 2003.
  • Radovanovic, D., Rizzi, M., Pini, S., Saad, M., Chiumello, D. A., and Santus, P., “Helmet CPAP to treat acute hypoxemic respiratory failure in patients with COVID-19: a management strategy proposal”, Journal of clinical medicine, 9 (4), 1191, 2020.
  • Vincent, J.-L., Akça, S., De Mendonça, A., Haji-Michael, P., Sprung, C., Moreno, R., Antonelli, M., Suter, P. M., and Group, S. W., “The epidemiology of acute respiratory failure in critically ill patients”, Chest, 121 (5), 1602-1609, 2002.
  • Kelley, M. A., Manaker, S., and Finlay, G., “Predictive scoring systems in the intensive care unit”, UpToDate. Available at: URL: http://www. uptodate. com/online/content/author. do, 2012.
  • Askew, E., “Work at high altitude and oxidative stress: antioxidant nutrients”, Toxicology, 180 (2), 107-119, 2002.
  • Prabhakar, N. R., and Kumar, G. K., “Oxidative stress in the systemic and cellular responses to intermittent hypoxia”, Biological chemistry, 385 (3-4), 217-221, 2004.
  • McGarry, T., Biniecka, M., Veale, D. J., and Fearon, U., “Hypoxia, oxidative stress and inflammation”, Free Radical Biology and Medicine, 125, 15-24, 2018.
  • Deneke, S. M., “Thiol-based antioxidants”, Curr Top Cell Regul, 36 (151-180), 447, 2000.
  • Erel, Ö., and Erdoğan, S., “Thiol Disulfide Homeostasis: An Integrated Approach with Biochemical and Clinical Aspects”, Turkish Journal of Medical Sciences, 2020.
  • Erel, O., and Neselioglu, S., “A novel and automated assay for thiol/disulphide homeostasis”, Clinical biochemistry, 47 (18), 326-332, 2014.
  • Circu, M. L., and Aw, T. Y., “Reactive oxygen species, cellular redox systems, and apoptosis”, Free Radical Biology and Medicine, 48 (6), 749-762, 2010.
  • Clanton, T. L., “Hypoxia-induced reactive oxygen species formation in skeletal muscle”, Journal of Applied Physiology, 102 (6), 2379-2388, 2007.
  • Paardekooper, L. M., van Vroonhoven, E., ter Beest, M., and van den Bogaart, G., “Radical Stress Is More Cytotoxic in the Nucleus than in Other Organelles”, International journal of molecular sciences, 20 (17), 4147, 2019.
  • Bowler, E., and Ladomery, M. R., "Working with Hypoxia," Redox-Mediated Signal Transduction, pp. 109-133: Springer, 2019.
  • Frijhoff, J., Winyard, P. G., Zarkovic, N., Davies, S. S., Stocker, R., Cheng, D., Knight, A. R., Taylor, E. L., Oettrich, J., and Ruskovska, T., “Clinical relevance of biomarkers of oxidative stress”, Antioxidants & redox signaling, 23 (14), 1144-1170, 2015.
  • Bernard, O., Jeny, F., Uzunhan, Y., Dondi, E., Terfous, R., Label, R., Sutton, A., Larghero, J., Vanneaux, V., and Nunes, H., “Mesenchymal stem cells reduce hypoxia-induced apoptosis in alveolar epithelial cells by modulating HIF and ROS hypoxic signaling”, American Journal of Physiology-Lung Cellular and Molecular Physiology, 314 (3), L360-L371, 2018.
  • Yadav, S., Kalra, N., Ganju, L., and Singh, M., “Activator protein-1 (AP-1): a bridge between life and death in lung epithelial (A549) cells under hypoxia”, Molecular and cellular biochemistry, 436 (1-2), 99-110, 2017.
  • Møller, P., Loft, S., Lundby, C., and Olsen, N. V., “Acute hypoxia and hypoxic exercise induce DNA strand breaks and oxidative DNA damage in humans”, The FASEB Journal, 15 (7), 1181-1186, 2001.
  • Ilavazhagan, G., Bansal, A., Prasad, D., Thomas, P., Sharma, S., Kain, A., Kumar, D., and Selvamurthy, W., “Effect of vitamin E supplementation on hypoxia-induced oxidative damage in male albino rats”, Aviation, space, and environmental medicine, 72 (10), 899-903, 2001.
  • Li, N., Li, Q., Bai, J., Chen, K., Yang, H., Wang, W., Fan, F., Zhang, Y., Meng, X., and Kuang, T., “The multiple organs insult and compensation mechanism in mice exposed to hypobaric hypoxia”, CELL STRESS & CHAPERONES, 2020.
  • Hernansanz-Agustín, P., Izquierdo-Álvarez, A., Sánchez-Gómez, F. J., Ramos, E., Villa-Piña, T., Lamas, S., Bogdanova, A., and Martínez-Ruiz, A., “Acute hypoxia produces a superoxide burst in cells”, Free radical biology and medicine, 71, 146-156, 2014.
  • Dröge, W., “Free Radicals in the Physiological Control of Cell Function”, Physiological Reviews, 82 (1), 47-95, 2002.
  • Ketcham, S. W., Sedhai, Y. R., Miller, H. C., Bolig, T. C., Ludwig, A., Claar, D., McSparron, J. I., Prescott, H. C., and Sjoding, M. W., “Causes and characteristics of death in patients with acute hypoxemic respiratory failure and acute respiratory distress syndrome: a retrospective cohort study”, Critical Care, 24 (1), 1-9, 2020.
There are 24 citations in total.

Details

Primary Language English
Subjects Biochemistry and Cell Biology (Other)
Journal Section Article
Authors

Bilal İlanbey 0000-0002-7614-281X

Duygu Zorlu 0000-0002-2379-024X

Hacı Mehmet Çalışkan 0000-0001-7370-420X

Zamir Kemal Ertürk 0000-0001-6837-2028

Burak Çelik 0000-0002-6746-4083

Süleyman Ersoy 0000-0001-5417-934X

Kenan Güçlü 0000-0002-0092-652X

Project Number TIP.A4.19.004
Publication Date August 29, 2022
Submission Date June 10, 2021
Acceptance Date May 11, 2022
Published in Issue Year 2022 Volume: 7 Issue: 2

Cite

IEEE B. İlanbey, “PROGNOSTIC VALUE OF DYNAMIC THIOL-DISULFIDE HOMEOSTASIS IN PREDICTING HOSPITAL MORTALITY IN HYPOXEMIC RESPIRATORY FAILURE”, IJHSRP, vol. 7, no. 2, pp. 138–145, 2022, doi: 10.33457/ijhsrp.950523.

DOAJ_logo.png   scholar_logo_64dp.pngcrossref-logo-landscape-200.pnglogo.pnglogo-minik.png  CenterLogo.png researchgate-vector-logo.png SciLit logo ile ilgili görsel sonucuicon.png?w=170&fakeurl=1Medical Reads

https://upload.wikimedia.org/wikipedia/commons/2/20/DOAJ_logo.pnghttps://upload.wikimedia.org/wikipedia/commons/2/20/DOAJ_logo.pnghttps://upload.wikimedia.org/wikipedia/commons/2/20/DOAJ_logo.pnghttps://upload.wikimedia.org/wikipedia/commons/2/20/DOAJ_logo.png    Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial -NoDerivatives 4.0 International License.