Review
BibTex RIS Cite

Drought-responsive miRNAs in plants: a review

Year 2022, , 150 - 157, 28.06.2022
https://doi.org/10.46460/ijiea.1024235

Abstract

MicroRNAs (miRNAs) are known as single-stranded RNA molecule functional in all steps of plant life including growth, development, and stress responses. Plant genomes harbor hundreds of miRNAs, which have diverse functions in regulating numerous biological processes. After being first discovered in plants by the year 2002, thousands of plant miRNAs have been identified so far. With the help of recent advances in high-throughput sequencing technologies, genome and transcriptome-wide screening of miRNAs in specific conditions and in a variety of plants has been conducted. Among the challenging conditions that inversely affect plants, drought stress is one of the main factors limiting plant growth and productivity worldwide. So far, drought-responsive miRNAs have been uncovered in particular plants. Moreover, functional characterizations of some miRNAs provide insights into their role in drought regulatory mechanisms. This review summarizes the most recent findings on miRNA-based drought stress regulation of plants. The study provides insights about role of miRNAs in drought stress response of plant.

References

  • Reference1 Kogan, F.N., Droughts of the late 1980s in the United States as derived from NOAA polar-orbiting satellite data, Bull. Am. Meteorol. Soc., 76(5), 655-668, 1995.
  • Reference2 EM-DAT, 2013. https://www.emdat.be/
  • Reference3 Dai, A.G., Trenberth K.E., Qian, T.T., A global data set of Palmer drought severity index for 1870–2002: relationship with soil moisture and effects of surface warming, J. Hydrometeorol., 5, 117-1130, 2004.
  • Reference4 Aukerman, M.J., and Sakai, H., Correction: Regulation of flowering time and floral organ identity by a microRNA and its APETALA2-like target genes, Plant Cell, 16, 555, 2004.
  • Reference5 Mallory, A.C., Vaucheret, H., Functions of microRNAs and related small RNAs in plants, Nat. Genet., 38(l ), 31-36, 2006.
  • Reference6 Voinnet, O., Origin, biogenesis, and activity of plant microRNAs, Cell, 136, 669-687, 2009.
  • Reference7 Lee, R.C., Feinbaum, R.L., Ambros, V., The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14, Cell, 75, 843-854, 1993.
  • Reference8 Kozomara, A., Birgaoanu, M. S., Griffiths-Jones, S., miRBase: from microRNA sequences to function, Nucleic acids research, 47, 155-162, 2019.
  • Reference9 Guo, Z., Kuang, Z., Wang, Y., Zhao, Y., Tao, Y., Cheng, C., ... & Yang, X., PmiREN: a comprehensive encyclopedia of plant miRNAs, Nucleic acids research, 48, 1114-1121, 2020.
  • Reference10 Liu, H. H., Tian, X., Li, Y.J., Wu, C.A., Zheng, C.C., Microarray-based analysis of stress-regulated microRNAs in Arabidopsis thaliana, RNA, 14(5), 836-843, 2008.
  • Reference11 Gong, L., Zhang, H., Gan, X., Zhang, L., Chen, Y., Nie, F., Shi L., Li, M., Guo, Z., Zhang, G., et al., Transcriptome profiling of the potato (Solanum tuberosum L.) Plant under drought stress and water-stimulus conditions, PloS One, 10(5), e0128041, 2015.
  • Reference12 Huang, L., Zhang, F., Wang, W., Zhou, Y., Fu, B., Li, Z., Comparative transcriptome sequencing of tolerant rice introgression line and its parents in response to drought stress, BMC Genomics, 15, 1026, 2014.
  • Reference13 Prince, S. J., Joshi, T., Mutava, R.N., Syed, N., Joao Vitor Mdos, S., Patil G., Song, L., Wang J., Lin, L., Chen, W., et al., Comparative analysis of the drought-responsive transcriptome in soybean lines contrasting for canopy wilting, Plant Sci., 240, 65–78, 2015.
  • Reference14 Kakumanu, A., Ambavaram M.M., Klumas, C., Krishnan, A., Batlang, U., Myers, E., Grene, R., Pereira, A., Effects of drought on gene expression in maize reproductive and leaf meristem tissue revealed by RNA-Seq, Plant Physiol., 160(2), 846–67, 2012.
  • Reference15 Shuai, P., Liang, D., Zhang, Z., Yin, W., Xia, X., Identification of drought-responsive and novel Populus trichocarpa microRNAs by high-throughput sequencing and their targets using degradome analysis, BMC Genomics, 14, 233, 2013.
  • Reference16 Ma, X., Wang, P., Zhou, S., Sun, Y., Liu N., Li, X., Hou,Y., De novo transcriptome sequencing and comprehensive analysis of the drought-responsive genes in the desert plant Cynanchum komarovii, BMC Genomics, vol 16(1), 753, 2015.
  • Reference17 Wang, Z., Hu, H., Goertzen, L.R., McElroy, Dane, J.SF., Analysis of the Citrullus colocynthis transcriptome during water deficit stress, PLoS One, 9, 8, 2014.
  • Reference18 Liu, C., Zhang, X., Zhang, K., An, H., Hu, K., Wen, J., Shen, J., Ma, C., Yi, B., Tu, J. et al., Comparative analysis of the Brassica napus root and leaf transcript profiling in response to drought stress, Int J Mol Sci, 16(8), 18752-77, 2015.
  • Reference19 Zare, S., Nazarian F, Ismailia, A., Pakniyatb, H., Identification of miRNAs and evaluation of candidate genes expression profile associated with drought stress in barley, Plant Gene, 20, 2019.
  • Reference20 Iquebal, M.A., Sharma, P., Jasrotia, R.S.., Jaiswal, S., Kaur, A., Saroha, M. U., Angadi, B., Sheoran, S., Singh, R., Singh, G.P., et al.., RNAseq analysis reveals drought-responsive molecular pathways with candidate genes and putative molecular markers in root tissue of wheat, Sci. Rep., 9, 13917, 2019.
  • Reference21 Obernosterer, G., Leuschner, P. J. F., Alenius, M., Martinez, J., Post-transcriptional regulation of microRNA expression, RNA, 12, 1161-1167, 2006. Reference22
  • Sood, P., Krek, A., Zavolan, M., Macino, G., Rajewsky, N., Cell-type-specific signatures of microRNAs on target mRNA expression, Proceedings of the National Academy of Sciences, 103(8), 2746-2751, 2006.
  • Reference23 Barrera-Figueroa, B.E., Gao, L., Wu, Z., Zhou, X., Zhu, J., Jin, H., Liu, R., Zhu, J.K., High throughput sequencing reveals novel and abiotic stress-regulated microRNAs in the inflorescences of rice, BMC Plant Biology, 12, 132, 2012.
  • Reference24 Ma, X., Xin, Z., Wang, Z., Yang, Q., Guo, S., Guo, X., Cao, L., Lin, T., Identification and comparative analysis of differentially expressed miRNAs in leaves of two wheat (Triticum aestivum L.) genotypes during dehydration stress, BMC Plant Biology, 15, 21, 2015.
  • Reference25 Eldem, V., Akçay, U. Ç., Ozhuner, E., Bakır, Y., Uranbey, S., Unver, T., Genome-wide identification of miRNAs responsive to drought in peach (Prunus persica) by high-throughput deep sequencing, PloS one, 7, 12, 2012.
  • Reference26 Thiebaut, F., Grativol, C., Tanurdzic, M., Carnavale-Bottino, M., Vieira, T., Motta, M.R., Rojas, C., Vincentini, R., Chabregas, S.M., Hemerly, A.S. et al., Differential sRNA regulation in leaves and roots of sugarcane under water depletion, PLoS One, 9, 4, 2014.
  • Reference27 Wang, T., Chen, L., Zhao, M., Tian, Q., Zhang, W.H., Identification of drought-responsive microRNAs in Medicago truncatula by genome-wide high-throughput sequencing, BMC Genomics, 12, 367, 2011.
  • Reference28 N. Zhang, J. Yang, Z. Wang, Y. Wen, J. Wang, W. He, B. Liu, H. Si, D. Wang, “Identification of novel and conserved microRNAs related to drought stress in potato by deep sequencing”, PLoS One, 9, 4, 2014.
  • Reference29 Chen, Q., Li, M., Zhang, Z., Tie, W., Chen, X., Jin, L., Xu, G., Integrated mRNA and microRNA analysis identifies genes and small miRNA molecules associated with transcriptional and post-transcriptional-level responses to both drought stress and re-watering treatment in tobacco, BMC genomics, 18(1), 62, 2017.
  • Reference30 Liu, M., Yu, H., Zhao, G., Huang, Q., Lu, Y., Ouyang, B., Profiling of drought-responsive microRNA and mRNA in tomato using high-throughput sequencing, BMC Genomics, 18, 481, 2017.
  • Reference31 Luo, M., Gao, Z., Li, H., Li, Q., Zhang, C., Xu, W., Song, S., Ma, C., Wang, S., Selection of reference genes for miRNA qRT-PCR under abiotic stress in grapevine, Sci Rep. 8(1), 4444, 2018.
  • Reference32 Akdogan, G., Tufekci, E. D., Uranbey, S., Unver, T., miRNA-based drought regulation in wheat, Functional & integrative genomics, 16(3), 221-233, 2016.
  • Reference33 Wang, M., Zheng, Q., Shen, Q., Guo, S., The Critical Role of Potassium in Plant Stress Response”, Int. J. Mol. Sci., 14, 7370-7390; 2013.
  • Reference34 Reyes, J.L., Chua, N.H., ABA induction of miR159 controls transcript levels of two MYB factors during Arabidopsis seed germination, Plant Journal, 49(4), 592-606, 2007.
  • Reference35 Allen, R.S., Li, J.Y., Alonso-Peral, M.M., White, R.G., Gubler, F., Millar, A.A., MicroR159 regulation of most conserved targets in Arabidopsis has negligible phenotypic effects, Silence 1, 18, 2010.
  • Reference36 Abe, H., Urao, T., Ito, T., Seki, M., Shinozaki, K., Yamaguchi-Shinozaki, K., Arabidopsis AtMYC2 (bHLH) and AtMYB2 (MYB) function as transcriptional activators in abscisic acid signaling, The Plant Cell, 15(1), 63-78, 2003.
  • Reference37 Tombuloglu, H., Genome-wide identification and expression analysis of R2R3, 3R-and 4R-MYB transcription factors during lignin biosynthesis in flax (Linum usitatissimum), Genomics, 112(1), 782-795, 2020.
  • Reference38 Oono, W.X. Li, Y., Zhu, J., He, X.J., Wu, J.M., Iida, K., Lu, X.Y., Cui, X., Jin, H., Zhu, J.K., The Arabidopsis NFYA5 transcription factor is regulated transcriptionally and posttranscriptionally to promote drought resistance, Plant Cell, 20(8), 2238–51, 2008.
  • Reference39 Zhao, B., Liang, R., Ge, L., Li, W., Xiao, H., Lin, H., Jin, Y., Identification of drought-induced microRNAs in rice, Biochemical and biophysical research communications, 354(2), 585-590, 2007. Reference40 X. Zhang, Z. Zou, P. Gong, J. Zhang, K. Ziaf, H. Li, F. Xiao, Z. Ye “Over-expression of microRNA169 confers enhanced drought tolerance to tomato”, Biotechnol Lett., 33(2), 403-409, 2011.
  • Reference41 Candar‐Cakir, B., Arican, E., Zhang, B., Small RNA and degradome deep sequencing reveals drought‐and tissue‐specific micrornas and their important roles in drought‐sensitive and drought‐tolerant tomato genotypes, Plant biotechnology journal, 14(8), 1727-1746, 2016.
  • Reference42 Yu, Y., Ni, Z., Wang, Y., Wan, H., Hu, Z., Jiang, Q., Sun, X., Zhang, H., Overexpression of soybean miR169c confers increased drought stress sensitivity in transgenic Arabidopsis thaliana, Plant Sci., 285, 68–77, 2019.
  • Reference43 Sun, H., Hu, M., Li, J., Chen, L., Li, M., Zhang, S., Yang, X., Comprehensive analysis of NAC transcription factors uncovers their roles during fiber development and stress response in cotton, BMC plant biology, 18(1), 1-15, 2018.
  • Reference44 Dudhate, A., Shinde, H., Yu, P., Tsugama, D., Gupta, S.K., Liu, S., Takano, T., Comprehensive analysis of NAC transcription factor family uncovers drought and salinity stress response in pearl millet (Pennisetum glaucum), BMC Genomics, 22(70), 1-15, 2021.
  • Reference45 Jiang, D., Zhou, L., Chen, W., Ye, N., Xia, J., Zhuang, C., Overexpression of a microRNA-targeted NAC transcription factor improves drought and salt tolerance in Rice via ABA-mediated pathways, Rice, 12, 76, 2019.
  • Reference46 Fang, Y., Xie, K., Xiong, L., Conserved miR164-targeted NAC genes negatively regulate drought resistance in rice, J Exp Bot., 65, 2119-2135, 2014.
  • Reference47 Shi, G., Fu, J., Rong, L., Zhang, P., Guo, C., Xiao, K., TaMIR1119, a miRNA family member of wheat (Triticum aestivum), is essential in the regulation of plant drought tolerance, J Integr Agric, 17, 2369–2378, 2018.
  • Reference48 Tombuloglu, H., Genome-wide analysis of the auxin response factors (ARF) gene family in barley (Hordeum vulgare L.), Journal of Plant Biochemistry and Biotechnology, 28(1), 14-24, 2019.
  • Reference49 Ho, T.S., Pak, H.S., Ryom, C.K., Han, M.H., Overexpression of OsmiR393a gene confers drought tolerance in creeping bentgrass, Plant Biotechnol Rep. 13, 85–93, 2019.
  • Reference50 Arshad, M., Gruber, M.Y., Hannoufa, A., Transcriptome analysis of microRNA156 overexpression alfalfa roots under drought stress, Scientific Reports, 8, 9363, 2018.
  • Reference51 Zhang, J., Zhang, H., Srivastava, A.K., Pan, Y., Bai, J., Fang, J., Shi, H., Zhu, J.K., Knockdown of rice microRNA166 confers drought resistance by causing leaf rolling and altering stem xylem development, Plant Physiol, 176, 2082–2094, 2018.
  • Reference52 Ding, Y., Tao, Y., Zhu, C., Emerging roles of microRNAs in the mediation of drought stress response in plants, Journal of experimental botany, 64(11), 3077-3086, 2013.
  • Reference53 Sunkar, R., Zhu, J. K., Novel and stress-regulated microRNAs and other small RNAs from Arabidopsis, The Plant Cell, 16(8), 2001-2019, 2004.
  • Reference54 Lu, S., Sun, Y.H., Chiang, V.L., Stress-responsive microRNAs in Populus, Plant J, 55, 131-151, 2008.
  • Reference55 Kantar, M., Lucas, S. J., Budak, H., miRNA expression patterns of Triticum dicoccoides in response to shock drought stress, Planta, 233(3), 471-484, 2011.
  • Reference56 Zhao, B., Liang, R., Ge, L., Li, W., Xiao, H., Lin, H., Ruan, K., Jin, Y., Identification of drought-induced microRNAs in rice, Biochem. Biophys. Res. Commun. 354, 585-590, 2007.
  • Reference57 Ferreira, T. H., Gentile, A., Vilela, R. D., Costa, G. G. L., Dias, L. I., Endres, L., Menossi, M., microRNAs associated with drought response in the bioenergy crop sugarcane (Saccharum s), PLoS One, 7, 10, 2012.
  • Reference58 Navarro, L., Dunoyer, P., Jay, F., Arnold, B., Dharmasiri, N., Estelle, M., Voinnet, O., Jones, J. D., A plant miRNA contributes to antibacterial resistance by repressing auxin signaling, Science, 312(5772), 436-439, 2006.
  • Reference59 Gupta, O. P., Meena, N. L., Sharma, I., Sharma, P., Differential regulation of microRNAs in response to osmotic, salt and cold stresses in wheat. Molecular biology reports, 41(7), 4623-4629, 2014.
  • Reference60 Zhou, X., Wang, G., Zhang, W., UV‐B responsive microRNA genes in Arabidopsis thaliana, Molecular systems biology, 3(1), 103, 2007.
  • Reference61 Sunkar, R., Li, Y. F., Jagadeeswaran, G., Functions of microRNAs in plant stress responses, Trends Plant Sci., 17, 196-203, 2012.
  • Reference62 Allen, E., Xie, Z., Gustafson, A. M., Carrington, J. C., microRNA-directed phasing during trans-acting siRNA biogenesis in plants, Cell, 121(2), 207-221, 2005.
  • Reference63 Williams, L., Carles, C. C., Osmont, K. S., Fletcher, J. C., A database analysis method identifies an endogenous trans-acting short-interfering RNA that targets the Arabidopsis ARF2, ARF3, and ARF4 genes, Proceedings of the National Academy of Sciences of the United States of America, 102(27), 9703-9708, 2005.
  • Reference64 Pekker, I., Alvarez, J. P., Eshed, Y., Auxin response factors mediate Arabidopsis organ asymmetry via modulation of KANADI activity, The Plant Cell, 17(11), 2899-2910, 2005.
  • Reference65 Meng, Y., Ma, X., Chen, D., Wu, P., Chen, M., MicroRNA-mediated signaling involved in plant root development, Biochemical and biophysical research communications, 393(3), 345-349, 2010.
  • Reference66 Kang, T., Yu, C. Y., Liu, Y., Song, W. M., Bao, Y., Guo, X. T., Subtly manipulated expression of zmmiR156 in tobacco improves drought and salt tolerance without changing the architecture of transgenic plants, Front. Plant Sci., 10, 1664, 2020.
  • Reference67 Feyissa, B. A., Arshad, M., Gruber, M. Y., Kohalmi, S. E., Hannoufa, A, The interplay between miR156/SPL13 and DFR/WD40–1 regulate drought tolerance in alfalfa, BMC Plant Biol., 19, 434, 2019.
  • Reference68 Li, W., Wang, T., Zhang, Y., Li, Y., Overexpression of soybean miR172c confers tolerance to water deficit and salt stress, but increases ABA sensitivity in transgenic Arabidopsis thaliana, J. Exp. Bot. 67, 175-194, 2016.
  • Reference69 Zhou, M., Li, D., Li, Z., Hu, Q., Yang, C., Zhu, L., Luo, H., Constitutive expression of a miR319 gene alters plant development and enhances salt and drought tolerance in transgenic creeping bentgrass, Plant Physiol, 161, 1375-1391, 2013.
  • Reference70 Xia, K., Wang, R., Ou, X., Fang, Z., Tian, C., Duan, J., OsTIR1 and OsAFB2 downregulation via OsmiR393 overexpression leads to more tillers, early flowering and less tolerance to salt and drought in rice, PLoS One, 7, e30039. doi: 10.1371/journal.pone.0030039, 2012.
  • Reference71 Ho, T., Pak, H., Ryom, C., Han, M., Overexpression of OsmiR393a gene confers drought tolerance in creeping bentgrass, Plant Biotechnol. Rep., 13, 85-93, 2019.
  • Reference72 Yuan, W.Y., Suo, J.Q., Shi, B., Zhou, C.L., Bai, B., Bian, H.W., Zhu, M.Y., Han, N., The barley miR393 has multiple roles in regulation of seedling growth, stomatal density, and drought stress tolerance, Plant. Physiol. Bioch., 142, 303-311, 2019.
  • Reference73 Geng, Z., Liu, J., Li, D., Zhao, G., Liu, X., Dou, H., Lv, L., Zhang, H., Wang, Y., A conserved miR394-Targeted F-Box gene positively regulates drought resistance in Foxtail Millet, J. Plant Biol., 64, 243-252, 2021.
  • Reference74 Ni, Z., Hu, Z., Jiang, Q., Zhang, H., Overexpression of gma-MIR394a confers tolerance to drought in transgenic Arabidopsis thaliana, Biochemical and Biophysical Research Communications, 427, 330-335, 2012.
  • Reference75 Liu, D., Song, Y., Chen, Z., Yu, D., Ectopic expression of miR396 suppresses GRF target gene expression and alters leaf growth in Arabidopsis, Physiol. Plant, 136, 223-236, 2009.
  • Reference76 Sun, Z., Shu, L., Zhang, W., Wang, Z., Cca-miR398 increases copper sulfate stress sensitivity via the regulation of CSD mRNA transcription levels in transgenic Arabidopsis thaliana, PeerJ, 8, 2020.
  • Reference77 Liu, B., Sun, G., MicroRNAs contribute to enhanced salt adaptation of the autopolyploid Hordeum bulbosum compared with its diploid ancestor, Plant J., 91(1), 57-69, 2017.
  • Reference78 Yang, F., Yu, D., Overexpression of Arabidopsis miR396 enhances drought tolerance in transgenic tobacco plants, Acta Botanica Yunnanica, 31, 421-426, 2009.
  • Reference79 Zhou, Y.G., Liu, W.C., Li, X.W., Sun, D.Q., Xu, K.H., Feng, C., Foka, I.C.K., Ketehouli, T., Gao, H.T., Wang, N., Dong, Y.Y., Wang, F.W., Li, H.Y., Integration of sRNA, degradome, transcriptome analysis and functional investigation reveals gma-miR398c negatively regulates drought tolerance via GmCSDs and GmCCS in transgenic Arabidopsis and soybean, BMC Plant Biol., 20, 190, 2020.
  • Reference80 Hajyzadeh, M., Turktas, M., Khawar, K. M., Unver, T., miR408 overexpression causes increased drought tolerance in chickpea, Gene, 555, 186-193, 2015.
  • Reference81 Hang, N., Shi, T., Liu, Y., Overexpression of Os-microRNA408 enhances drought tolerance in perennial ryegrass, Physiol Plant, https://doi.org/10.1111/ppl.13276, 2020.
  • Reference82 Ma, C., Burd, S., Lers, A., MiR408 is involved in abiotic stress responses in Arabidopsis, Plant J, 84, 169-187, 2015. [83] Yue, E., Cao, H., Liu, B., OsmiR535, a potential genetic editing target for drought and salinity stress tolerance in Oryza sativa, Plants (Basel), 9, 2020.
  • Reference84 Ferdous, J., Whitford, R., Nguyen, M., Brien, C., Langridge, P., Tricker, P.J., Drought-inducible expression of Hv-miR827 enhances drought tolerance in transgenic barley, Funct Integr Genomics, 17, 279-92, 2017.
  • Reference85 Shi, G.Q., Fu, J.Y., Rong, L.J., Zhang, P.Y., Guo, C.J., Xiao, K., TaMIR1119, a miRNA family member of wheat (Triticum aestivum), is essential in the regulation of plant drought tolerance, Journal of Integrative Agriculture, 17, 5-14, 2018.
  • Reference86 Chen, L., Meng, J., Luan, Y., miR1916 plays a role as a negative regulator in drought stress resistance in tomato and tobacco, Biochem. Biophys. Res. Commun., 508(2), 597-602, 2019.
  • Reference87 Kantar, M., Unver, T., Budak, H., Regulation of barley miRNAs upon dehydration stress correlated with target gene expression, Functional & integrative genomics, 10(4), 493-507, 2010.
  • Reference88 Li, Y., Wan, L., Bi, S., Wan, X., Li, Z., Cao, J., Tong, Z., Xu, H., He, F., Li, X., Identification of drought‐responsive microRNAs from roots and leaves of alfalfa by high‐throughput sequencing, Genes, 8, 119, 2017.
  • Reference89 Boualem, A., Laporte, P., Jovanovic, M., Laffont, C., Plet, J., Combier, J. P., Nieber, A., Crespi, M., Frugier, F., MicroRNA166 controls root and nodule development in Medicago truncatula, The Plant Journal, 54(5), 876-887, 2008.
  • Reference90 Trindade, I., Capitão, C., Dalmay, T., Fevereiro, M.P., dos Santos, D.M., miR398 and miR408 are up-regulated in response to water deficit in Medicago truncatula, Planta, 231(3), 705–716, 2010.
  • Reference91 Lu, S., Sun, Y. H., Shi, R., Clark, C., Li, L., Chiang, V.L., Novel and mechanical stressresponsive microRNAs in Populus trichocarpa that are absent from Arabidopsis, Plant Cell Online, 17(8), 2186-2203, 2005.
  • Reference92 Li, T., Li, H., Zhang, Y.X., Liu, J.Y., Identification and analysis of seven H(2)O(2)- responsive miRNAs and 32 new miRNAs in the seedlings of rice (Oryza sativa L. ssp. indica), Nucleic Acids Res., 39(7), 2821-2833, 2011.

Bitkilerde kuraklığa duyarlı miRNA'lar: derleme

Year 2022, , 150 - 157, 28.06.2022
https://doi.org/10.46460/ijiea.1024235

Abstract

MikroRNA'lar (miRNA'lar), bitki yaşamının büyüme, gelişme ve stres yanitlari olmak üzere tüm aşamalarinda fonksiyonel olan tek iplikli RNA molekülü olarak bilinir. Bitki genomları, sayısız biyolojik süreci düzenlemede çeşitli fonksiyonlari olan yüzlerce miRNA'yı barındırır. Bitkilerde ilk kez 2002 yılında keşfedildikten sonra, bugüne kadar binlerce bitki miRNA'sı tanımlanmıştır. Yüksek verimli dizileme teknolojilerindeki son gelişmelerin yardımıyla, belirli koşullardaki çeşitli bitkilerde miRNA'ların genom ve transkriptom düzeyinde taranması gerçekleştirilmiştir. Bitkileri olumsuz etkileyen koşullardan kuraklık stresi, dünya çapında bitki büyümesini ve üretkenliğini sınırlayan başlica faktörlerden biridir. Bugüne kadar, belirli bitkilerde kuraklığa duyarlı miRNA'lar ortaya çıkarılmıştır. Ayrıca, bazı miRNA'ların fonksiyonel karakterizasyonları, kuraklığı düzenleyici mekanizmalardaki rolleri hakkında bilgi sağlamaktadır. Bu derleme, bitkilerin miRNA tabanlı kuraklık stresi regulasyonuna ilişkin en son bulguları özetlemektedir. Çalışma, bitkinin kuraklık stresi yanıtında miRNA'ların rolü hakkında fikir vermektedir.

References

  • Reference1 Kogan, F.N., Droughts of the late 1980s in the United States as derived from NOAA polar-orbiting satellite data, Bull. Am. Meteorol. Soc., 76(5), 655-668, 1995.
  • Reference2 EM-DAT, 2013. https://www.emdat.be/
  • Reference3 Dai, A.G., Trenberth K.E., Qian, T.T., A global data set of Palmer drought severity index for 1870–2002: relationship with soil moisture and effects of surface warming, J. Hydrometeorol., 5, 117-1130, 2004.
  • Reference4 Aukerman, M.J., and Sakai, H., Correction: Regulation of flowering time and floral organ identity by a microRNA and its APETALA2-like target genes, Plant Cell, 16, 555, 2004.
  • Reference5 Mallory, A.C., Vaucheret, H., Functions of microRNAs and related small RNAs in plants, Nat. Genet., 38(l ), 31-36, 2006.
  • Reference6 Voinnet, O., Origin, biogenesis, and activity of plant microRNAs, Cell, 136, 669-687, 2009.
  • Reference7 Lee, R.C., Feinbaum, R.L., Ambros, V., The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14, Cell, 75, 843-854, 1993.
  • Reference8 Kozomara, A., Birgaoanu, M. S., Griffiths-Jones, S., miRBase: from microRNA sequences to function, Nucleic acids research, 47, 155-162, 2019.
  • Reference9 Guo, Z., Kuang, Z., Wang, Y., Zhao, Y., Tao, Y., Cheng, C., ... & Yang, X., PmiREN: a comprehensive encyclopedia of plant miRNAs, Nucleic acids research, 48, 1114-1121, 2020.
  • Reference10 Liu, H. H., Tian, X., Li, Y.J., Wu, C.A., Zheng, C.C., Microarray-based analysis of stress-regulated microRNAs in Arabidopsis thaliana, RNA, 14(5), 836-843, 2008.
  • Reference11 Gong, L., Zhang, H., Gan, X., Zhang, L., Chen, Y., Nie, F., Shi L., Li, M., Guo, Z., Zhang, G., et al., Transcriptome profiling of the potato (Solanum tuberosum L.) Plant under drought stress and water-stimulus conditions, PloS One, 10(5), e0128041, 2015.
  • Reference12 Huang, L., Zhang, F., Wang, W., Zhou, Y., Fu, B., Li, Z., Comparative transcriptome sequencing of tolerant rice introgression line and its parents in response to drought stress, BMC Genomics, 15, 1026, 2014.
  • Reference13 Prince, S. J., Joshi, T., Mutava, R.N., Syed, N., Joao Vitor Mdos, S., Patil G., Song, L., Wang J., Lin, L., Chen, W., et al., Comparative analysis of the drought-responsive transcriptome in soybean lines contrasting for canopy wilting, Plant Sci., 240, 65–78, 2015.
  • Reference14 Kakumanu, A., Ambavaram M.M., Klumas, C., Krishnan, A., Batlang, U., Myers, E., Grene, R., Pereira, A., Effects of drought on gene expression in maize reproductive and leaf meristem tissue revealed by RNA-Seq, Plant Physiol., 160(2), 846–67, 2012.
  • Reference15 Shuai, P., Liang, D., Zhang, Z., Yin, W., Xia, X., Identification of drought-responsive and novel Populus trichocarpa microRNAs by high-throughput sequencing and their targets using degradome analysis, BMC Genomics, 14, 233, 2013.
  • Reference16 Ma, X., Wang, P., Zhou, S., Sun, Y., Liu N., Li, X., Hou,Y., De novo transcriptome sequencing and comprehensive analysis of the drought-responsive genes in the desert plant Cynanchum komarovii, BMC Genomics, vol 16(1), 753, 2015.
  • Reference17 Wang, Z., Hu, H., Goertzen, L.R., McElroy, Dane, J.SF., Analysis of the Citrullus colocynthis transcriptome during water deficit stress, PLoS One, 9, 8, 2014.
  • Reference18 Liu, C., Zhang, X., Zhang, K., An, H., Hu, K., Wen, J., Shen, J., Ma, C., Yi, B., Tu, J. et al., Comparative analysis of the Brassica napus root and leaf transcript profiling in response to drought stress, Int J Mol Sci, 16(8), 18752-77, 2015.
  • Reference19 Zare, S., Nazarian F, Ismailia, A., Pakniyatb, H., Identification of miRNAs and evaluation of candidate genes expression profile associated with drought stress in barley, Plant Gene, 20, 2019.
  • Reference20 Iquebal, M.A., Sharma, P., Jasrotia, R.S.., Jaiswal, S., Kaur, A., Saroha, M. U., Angadi, B., Sheoran, S., Singh, R., Singh, G.P., et al.., RNAseq analysis reveals drought-responsive molecular pathways with candidate genes and putative molecular markers in root tissue of wheat, Sci. Rep., 9, 13917, 2019.
  • Reference21 Obernosterer, G., Leuschner, P. J. F., Alenius, M., Martinez, J., Post-transcriptional regulation of microRNA expression, RNA, 12, 1161-1167, 2006. Reference22
  • Sood, P., Krek, A., Zavolan, M., Macino, G., Rajewsky, N., Cell-type-specific signatures of microRNAs on target mRNA expression, Proceedings of the National Academy of Sciences, 103(8), 2746-2751, 2006.
  • Reference23 Barrera-Figueroa, B.E., Gao, L., Wu, Z., Zhou, X., Zhu, J., Jin, H., Liu, R., Zhu, J.K., High throughput sequencing reveals novel and abiotic stress-regulated microRNAs in the inflorescences of rice, BMC Plant Biology, 12, 132, 2012.
  • Reference24 Ma, X., Xin, Z., Wang, Z., Yang, Q., Guo, S., Guo, X., Cao, L., Lin, T., Identification and comparative analysis of differentially expressed miRNAs in leaves of two wheat (Triticum aestivum L.) genotypes during dehydration stress, BMC Plant Biology, 15, 21, 2015.
  • Reference25 Eldem, V., Akçay, U. Ç., Ozhuner, E., Bakır, Y., Uranbey, S., Unver, T., Genome-wide identification of miRNAs responsive to drought in peach (Prunus persica) by high-throughput deep sequencing, PloS one, 7, 12, 2012.
  • Reference26 Thiebaut, F., Grativol, C., Tanurdzic, M., Carnavale-Bottino, M., Vieira, T., Motta, M.R., Rojas, C., Vincentini, R., Chabregas, S.M., Hemerly, A.S. et al., Differential sRNA regulation in leaves and roots of sugarcane under water depletion, PLoS One, 9, 4, 2014.
  • Reference27 Wang, T., Chen, L., Zhao, M., Tian, Q., Zhang, W.H., Identification of drought-responsive microRNAs in Medicago truncatula by genome-wide high-throughput sequencing, BMC Genomics, 12, 367, 2011.
  • Reference28 N. Zhang, J. Yang, Z. Wang, Y. Wen, J. Wang, W. He, B. Liu, H. Si, D. Wang, “Identification of novel and conserved microRNAs related to drought stress in potato by deep sequencing”, PLoS One, 9, 4, 2014.
  • Reference29 Chen, Q., Li, M., Zhang, Z., Tie, W., Chen, X., Jin, L., Xu, G., Integrated mRNA and microRNA analysis identifies genes and small miRNA molecules associated with transcriptional and post-transcriptional-level responses to both drought stress and re-watering treatment in tobacco, BMC genomics, 18(1), 62, 2017.
  • Reference30 Liu, M., Yu, H., Zhao, G., Huang, Q., Lu, Y., Ouyang, B., Profiling of drought-responsive microRNA and mRNA in tomato using high-throughput sequencing, BMC Genomics, 18, 481, 2017.
  • Reference31 Luo, M., Gao, Z., Li, H., Li, Q., Zhang, C., Xu, W., Song, S., Ma, C., Wang, S., Selection of reference genes for miRNA qRT-PCR under abiotic stress in grapevine, Sci Rep. 8(1), 4444, 2018.
  • Reference32 Akdogan, G., Tufekci, E. D., Uranbey, S., Unver, T., miRNA-based drought regulation in wheat, Functional & integrative genomics, 16(3), 221-233, 2016.
  • Reference33 Wang, M., Zheng, Q., Shen, Q., Guo, S., The Critical Role of Potassium in Plant Stress Response”, Int. J. Mol. Sci., 14, 7370-7390; 2013.
  • Reference34 Reyes, J.L., Chua, N.H., ABA induction of miR159 controls transcript levels of two MYB factors during Arabidopsis seed germination, Plant Journal, 49(4), 592-606, 2007.
  • Reference35 Allen, R.S., Li, J.Y., Alonso-Peral, M.M., White, R.G., Gubler, F., Millar, A.A., MicroR159 regulation of most conserved targets in Arabidopsis has negligible phenotypic effects, Silence 1, 18, 2010.
  • Reference36 Abe, H., Urao, T., Ito, T., Seki, M., Shinozaki, K., Yamaguchi-Shinozaki, K., Arabidopsis AtMYC2 (bHLH) and AtMYB2 (MYB) function as transcriptional activators in abscisic acid signaling, The Plant Cell, 15(1), 63-78, 2003.
  • Reference37 Tombuloglu, H., Genome-wide identification and expression analysis of R2R3, 3R-and 4R-MYB transcription factors during lignin biosynthesis in flax (Linum usitatissimum), Genomics, 112(1), 782-795, 2020.
  • Reference38 Oono, W.X. Li, Y., Zhu, J., He, X.J., Wu, J.M., Iida, K., Lu, X.Y., Cui, X., Jin, H., Zhu, J.K., The Arabidopsis NFYA5 transcription factor is regulated transcriptionally and posttranscriptionally to promote drought resistance, Plant Cell, 20(8), 2238–51, 2008.
  • Reference39 Zhao, B., Liang, R., Ge, L., Li, W., Xiao, H., Lin, H., Jin, Y., Identification of drought-induced microRNAs in rice, Biochemical and biophysical research communications, 354(2), 585-590, 2007. Reference40 X. Zhang, Z. Zou, P. Gong, J. Zhang, K. Ziaf, H. Li, F. Xiao, Z. Ye “Over-expression of microRNA169 confers enhanced drought tolerance to tomato”, Biotechnol Lett., 33(2), 403-409, 2011.
  • Reference41 Candar‐Cakir, B., Arican, E., Zhang, B., Small RNA and degradome deep sequencing reveals drought‐and tissue‐specific micrornas and their important roles in drought‐sensitive and drought‐tolerant tomato genotypes, Plant biotechnology journal, 14(8), 1727-1746, 2016.
  • Reference42 Yu, Y., Ni, Z., Wang, Y., Wan, H., Hu, Z., Jiang, Q., Sun, X., Zhang, H., Overexpression of soybean miR169c confers increased drought stress sensitivity in transgenic Arabidopsis thaliana, Plant Sci., 285, 68–77, 2019.
  • Reference43 Sun, H., Hu, M., Li, J., Chen, L., Li, M., Zhang, S., Yang, X., Comprehensive analysis of NAC transcription factors uncovers their roles during fiber development and stress response in cotton, BMC plant biology, 18(1), 1-15, 2018.
  • Reference44 Dudhate, A., Shinde, H., Yu, P., Tsugama, D., Gupta, S.K., Liu, S., Takano, T., Comprehensive analysis of NAC transcription factor family uncovers drought and salinity stress response in pearl millet (Pennisetum glaucum), BMC Genomics, 22(70), 1-15, 2021.
  • Reference45 Jiang, D., Zhou, L., Chen, W., Ye, N., Xia, J., Zhuang, C., Overexpression of a microRNA-targeted NAC transcription factor improves drought and salt tolerance in Rice via ABA-mediated pathways, Rice, 12, 76, 2019.
  • Reference46 Fang, Y., Xie, K., Xiong, L., Conserved miR164-targeted NAC genes negatively regulate drought resistance in rice, J Exp Bot., 65, 2119-2135, 2014.
  • Reference47 Shi, G., Fu, J., Rong, L., Zhang, P., Guo, C., Xiao, K., TaMIR1119, a miRNA family member of wheat (Triticum aestivum), is essential in the regulation of plant drought tolerance, J Integr Agric, 17, 2369–2378, 2018.
  • Reference48 Tombuloglu, H., Genome-wide analysis of the auxin response factors (ARF) gene family in barley (Hordeum vulgare L.), Journal of Plant Biochemistry and Biotechnology, 28(1), 14-24, 2019.
  • Reference49 Ho, T.S., Pak, H.S., Ryom, C.K., Han, M.H., Overexpression of OsmiR393a gene confers drought tolerance in creeping bentgrass, Plant Biotechnol Rep. 13, 85–93, 2019.
  • Reference50 Arshad, M., Gruber, M.Y., Hannoufa, A., Transcriptome analysis of microRNA156 overexpression alfalfa roots under drought stress, Scientific Reports, 8, 9363, 2018.
  • Reference51 Zhang, J., Zhang, H., Srivastava, A.K., Pan, Y., Bai, J., Fang, J., Shi, H., Zhu, J.K., Knockdown of rice microRNA166 confers drought resistance by causing leaf rolling and altering stem xylem development, Plant Physiol, 176, 2082–2094, 2018.
  • Reference52 Ding, Y., Tao, Y., Zhu, C., Emerging roles of microRNAs in the mediation of drought stress response in plants, Journal of experimental botany, 64(11), 3077-3086, 2013.
  • Reference53 Sunkar, R., Zhu, J. K., Novel and stress-regulated microRNAs and other small RNAs from Arabidopsis, The Plant Cell, 16(8), 2001-2019, 2004.
  • Reference54 Lu, S., Sun, Y.H., Chiang, V.L., Stress-responsive microRNAs in Populus, Plant J, 55, 131-151, 2008.
  • Reference55 Kantar, M., Lucas, S. J., Budak, H., miRNA expression patterns of Triticum dicoccoides in response to shock drought stress, Planta, 233(3), 471-484, 2011.
  • Reference56 Zhao, B., Liang, R., Ge, L., Li, W., Xiao, H., Lin, H., Ruan, K., Jin, Y., Identification of drought-induced microRNAs in rice, Biochem. Biophys. Res. Commun. 354, 585-590, 2007.
  • Reference57 Ferreira, T. H., Gentile, A., Vilela, R. D., Costa, G. G. L., Dias, L. I., Endres, L., Menossi, M., microRNAs associated with drought response in the bioenergy crop sugarcane (Saccharum s), PLoS One, 7, 10, 2012.
  • Reference58 Navarro, L., Dunoyer, P., Jay, F., Arnold, B., Dharmasiri, N., Estelle, M., Voinnet, O., Jones, J. D., A plant miRNA contributes to antibacterial resistance by repressing auxin signaling, Science, 312(5772), 436-439, 2006.
  • Reference59 Gupta, O. P., Meena, N. L., Sharma, I., Sharma, P., Differential regulation of microRNAs in response to osmotic, salt and cold stresses in wheat. Molecular biology reports, 41(7), 4623-4629, 2014.
  • Reference60 Zhou, X., Wang, G., Zhang, W., UV‐B responsive microRNA genes in Arabidopsis thaliana, Molecular systems biology, 3(1), 103, 2007.
  • Reference61 Sunkar, R., Li, Y. F., Jagadeeswaran, G., Functions of microRNAs in plant stress responses, Trends Plant Sci., 17, 196-203, 2012.
  • Reference62 Allen, E., Xie, Z., Gustafson, A. M., Carrington, J. C., microRNA-directed phasing during trans-acting siRNA biogenesis in plants, Cell, 121(2), 207-221, 2005.
  • Reference63 Williams, L., Carles, C. C., Osmont, K. S., Fletcher, J. C., A database analysis method identifies an endogenous trans-acting short-interfering RNA that targets the Arabidopsis ARF2, ARF3, and ARF4 genes, Proceedings of the National Academy of Sciences of the United States of America, 102(27), 9703-9708, 2005.
  • Reference64 Pekker, I., Alvarez, J. P., Eshed, Y., Auxin response factors mediate Arabidopsis organ asymmetry via modulation of KANADI activity, The Plant Cell, 17(11), 2899-2910, 2005.
  • Reference65 Meng, Y., Ma, X., Chen, D., Wu, P., Chen, M., MicroRNA-mediated signaling involved in plant root development, Biochemical and biophysical research communications, 393(3), 345-349, 2010.
  • Reference66 Kang, T., Yu, C. Y., Liu, Y., Song, W. M., Bao, Y., Guo, X. T., Subtly manipulated expression of zmmiR156 in tobacco improves drought and salt tolerance without changing the architecture of transgenic plants, Front. Plant Sci., 10, 1664, 2020.
  • Reference67 Feyissa, B. A., Arshad, M., Gruber, M. Y., Kohalmi, S. E., Hannoufa, A, The interplay between miR156/SPL13 and DFR/WD40–1 regulate drought tolerance in alfalfa, BMC Plant Biol., 19, 434, 2019.
  • Reference68 Li, W., Wang, T., Zhang, Y., Li, Y., Overexpression of soybean miR172c confers tolerance to water deficit and salt stress, but increases ABA sensitivity in transgenic Arabidopsis thaliana, J. Exp. Bot. 67, 175-194, 2016.
  • Reference69 Zhou, M., Li, D., Li, Z., Hu, Q., Yang, C., Zhu, L., Luo, H., Constitutive expression of a miR319 gene alters plant development and enhances salt and drought tolerance in transgenic creeping bentgrass, Plant Physiol, 161, 1375-1391, 2013.
  • Reference70 Xia, K., Wang, R., Ou, X., Fang, Z., Tian, C., Duan, J., OsTIR1 and OsAFB2 downregulation via OsmiR393 overexpression leads to more tillers, early flowering and less tolerance to salt and drought in rice, PLoS One, 7, e30039. doi: 10.1371/journal.pone.0030039, 2012.
  • Reference71 Ho, T., Pak, H., Ryom, C., Han, M., Overexpression of OsmiR393a gene confers drought tolerance in creeping bentgrass, Plant Biotechnol. Rep., 13, 85-93, 2019.
  • Reference72 Yuan, W.Y., Suo, J.Q., Shi, B., Zhou, C.L., Bai, B., Bian, H.W., Zhu, M.Y., Han, N., The barley miR393 has multiple roles in regulation of seedling growth, stomatal density, and drought stress tolerance, Plant. Physiol. Bioch., 142, 303-311, 2019.
  • Reference73 Geng, Z., Liu, J., Li, D., Zhao, G., Liu, X., Dou, H., Lv, L., Zhang, H., Wang, Y., A conserved miR394-Targeted F-Box gene positively regulates drought resistance in Foxtail Millet, J. Plant Biol., 64, 243-252, 2021.
  • Reference74 Ni, Z., Hu, Z., Jiang, Q., Zhang, H., Overexpression of gma-MIR394a confers tolerance to drought in transgenic Arabidopsis thaliana, Biochemical and Biophysical Research Communications, 427, 330-335, 2012.
  • Reference75 Liu, D., Song, Y., Chen, Z., Yu, D., Ectopic expression of miR396 suppresses GRF target gene expression and alters leaf growth in Arabidopsis, Physiol. Plant, 136, 223-236, 2009.
  • Reference76 Sun, Z., Shu, L., Zhang, W., Wang, Z., Cca-miR398 increases copper sulfate stress sensitivity via the regulation of CSD mRNA transcription levels in transgenic Arabidopsis thaliana, PeerJ, 8, 2020.
  • Reference77 Liu, B., Sun, G., MicroRNAs contribute to enhanced salt adaptation of the autopolyploid Hordeum bulbosum compared with its diploid ancestor, Plant J., 91(1), 57-69, 2017.
  • Reference78 Yang, F., Yu, D., Overexpression of Arabidopsis miR396 enhances drought tolerance in transgenic tobacco plants, Acta Botanica Yunnanica, 31, 421-426, 2009.
  • Reference79 Zhou, Y.G., Liu, W.C., Li, X.W., Sun, D.Q., Xu, K.H., Feng, C., Foka, I.C.K., Ketehouli, T., Gao, H.T., Wang, N., Dong, Y.Y., Wang, F.W., Li, H.Y., Integration of sRNA, degradome, transcriptome analysis and functional investigation reveals gma-miR398c negatively regulates drought tolerance via GmCSDs and GmCCS in transgenic Arabidopsis and soybean, BMC Plant Biol., 20, 190, 2020.
  • Reference80 Hajyzadeh, M., Turktas, M., Khawar, K. M., Unver, T., miR408 overexpression causes increased drought tolerance in chickpea, Gene, 555, 186-193, 2015.
  • Reference81 Hang, N., Shi, T., Liu, Y., Overexpression of Os-microRNA408 enhances drought tolerance in perennial ryegrass, Physiol Plant, https://doi.org/10.1111/ppl.13276, 2020.
  • Reference82 Ma, C., Burd, S., Lers, A., MiR408 is involved in abiotic stress responses in Arabidopsis, Plant J, 84, 169-187, 2015. [83] Yue, E., Cao, H., Liu, B., OsmiR535, a potential genetic editing target for drought and salinity stress tolerance in Oryza sativa, Plants (Basel), 9, 2020.
  • Reference84 Ferdous, J., Whitford, R., Nguyen, M., Brien, C., Langridge, P., Tricker, P.J., Drought-inducible expression of Hv-miR827 enhances drought tolerance in transgenic barley, Funct Integr Genomics, 17, 279-92, 2017.
  • Reference85 Shi, G.Q., Fu, J.Y., Rong, L.J., Zhang, P.Y., Guo, C.J., Xiao, K., TaMIR1119, a miRNA family member of wheat (Triticum aestivum), is essential in the regulation of plant drought tolerance, Journal of Integrative Agriculture, 17, 5-14, 2018.
  • Reference86 Chen, L., Meng, J., Luan, Y., miR1916 plays a role as a negative regulator in drought stress resistance in tomato and tobacco, Biochem. Biophys. Res. Commun., 508(2), 597-602, 2019.
  • Reference87 Kantar, M., Unver, T., Budak, H., Regulation of barley miRNAs upon dehydration stress correlated with target gene expression, Functional & integrative genomics, 10(4), 493-507, 2010.
  • Reference88 Li, Y., Wan, L., Bi, S., Wan, X., Li, Z., Cao, J., Tong, Z., Xu, H., He, F., Li, X., Identification of drought‐responsive microRNAs from roots and leaves of alfalfa by high‐throughput sequencing, Genes, 8, 119, 2017.
  • Reference89 Boualem, A., Laporte, P., Jovanovic, M., Laffont, C., Plet, J., Combier, J. P., Nieber, A., Crespi, M., Frugier, F., MicroRNA166 controls root and nodule development in Medicago truncatula, The Plant Journal, 54(5), 876-887, 2008.
  • Reference90 Trindade, I., Capitão, C., Dalmay, T., Fevereiro, M.P., dos Santos, D.M., miR398 and miR408 are up-regulated in response to water deficit in Medicago truncatula, Planta, 231(3), 705–716, 2010.
  • Reference91 Lu, S., Sun, Y. H., Shi, R., Clark, C., Li, L., Chiang, V.L., Novel and mechanical stressresponsive microRNAs in Populus trichocarpa that are absent from Arabidopsis, Plant Cell Online, 17(8), 2186-2203, 2005.
  • Reference92 Li, T., Li, H., Zhang, Y.X., Liu, J.Y., Identification and analysis of seven H(2)O(2)- responsive miRNAs and 32 new miRNAs in the seedlings of rice (Oryza sativa L. ssp. indica), Nucleic Acids Res., 39(7), 2821-2833, 2011.
There are 90 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Review
Authors

Guzin Tombuloglu 0000-0002-6743-9996

Publication Date June 28, 2022
Submission Date November 16, 2021
Published in Issue Year 2022

Cite

APA Tombuloglu, G. (2022). Drought-responsive miRNAs in plants: a review. International Journal of Innovative Engineering Applications, 6(1), 150-157. https://doi.org/10.46460/ijiea.1024235
AMA Tombuloglu G. Drought-responsive miRNAs in plants: a review. ijiea, IJIEA. June 2022;6(1):150-157. doi:10.46460/ijiea.1024235
Chicago Tombuloglu, Guzin. “Drought-Responsive MiRNAs in Plants: A Review”. International Journal of Innovative Engineering Applications 6, no. 1 (June 2022): 150-57. https://doi.org/10.46460/ijiea.1024235.
EndNote Tombuloglu G (June 1, 2022) Drought-responsive miRNAs in plants: a review. International Journal of Innovative Engineering Applications 6 1 150–157.
IEEE G. Tombuloglu, “Drought-responsive miRNAs in plants: a review”, ijiea, IJIEA, vol. 6, no. 1, pp. 150–157, 2022, doi: 10.46460/ijiea.1024235.
ISNAD Tombuloglu, Guzin. “Drought-Responsive MiRNAs in Plants: A Review”. International Journal of Innovative Engineering Applications 6/1 (June 2022), 150-157. https://doi.org/10.46460/ijiea.1024235.
JAMA Tombuloglu G. Drought-responsive miRNAs in plants: a review. ijiea, IJIEA. 2022;6:150–157.
MLA Tombuloglu, Guzin. “Drought-Responsive MiRNAs in Plants: A Review”. International Journal of Innovative Engineering Applications, vol. 6, no. 1, 2022, pp. 150-7, doi:10.46460/ijiea.1024235.
Vancouver Tombuloglu G. Drought-responsive miRNAs in plants: a review. ijiea, IJIEA. 2022;6(1):150-7.