Research Article
BibTex RIS Cite

Parametric Analysis of the Performance of Steel-Concrete Composite Structures Designed with TBDY 2018

Year 2022, , 7 - 16, 28.06.2022
https://doi.org/10.46460/ijiea.1029942

Abstract

In this study, the seismic behavior of steel-concrete composite buildings designed using ÇYTHYE 2016 and TBDY 2018 was investigated. For this purpose, composite moment resisting frame buildings with concrete filled steel tube columns and composite beams with 5, 10, 15 and 20 stories are modeled. Buildings are designed at high ductility (DCH) levels. During the design of the DCH class structures, the design was carried out for the ZA soil class for 0.79 g PGA in the region selected from the earthquake map given in the regulations. Within the scope of the study, SeismoStruct software was used during the design and performance evaluation of the structures. Incremental dynamic analyzes were used along with nonlinear static pushover analyses. In the static pushover analysis, uniform and triangular load distributions of the lateral load are adopted. In the dynamic analysis, 16 earthquake ground motions were obtained from AFAD earthquake acceleration databases according to the relevant design area and used. The variation of the seismic behavior of CMRFs depending on the variation of the floor number was investigated using nonlinear analysis results. Accordingly, the variation in lateral response, overstrength factors and ductility factors for CMRF structures are presented comparatively. In addition, the section deformation capacities were investigated during the IDR changes during dynamic and static nonlinear analyses. The behavior factor of all CMRFs, especially the CMRFs studied in the case study, demonstrated above-expected performance according to the design assumptions.

References

  • [1] M. Inel, H.B. Ozmen, H. Bilgin, Re-evaluation of building damage during recent earthquakes in Turkey, Eng Struct 30 (2) (2008)412–27.
  • [2] B. Sevim, A.C. Altunışık, Kompozit Kolon Elemanların Modal Davranışlarının Belirlenmesi, DÜMF Mühendislik Derg (212) (2017)13–24.
  • [3] M. Pecce, C. Amadio, F. Rossi, G. Rinaldin, Non-linear behaviour of steel-concrete composite moment resisting frames, 15th World Conf Earthq Eng (2012)
  • [4] G.S. Kamaris, K.A. Skalomenos, G.D. Hatzigeorgiou, D.E. Beskos, Seismic damage estimation of in-plane regular steel/concrete composite moment resisting frames, Eng Struct Elsevier Ltd 115 (5) (2016)67–77.
  • [5] N. Jianguo, H. Yuan, Y. Weijian, F. Jiansheng, Seismic behavior of CFRSTC composite frames considering slab effects, J Constr Steel Res Elsevier Ltd 68 (1) (2012)165–75.
  • [6] Y. Essopjee, M. Dundu, Performance of concrete-filled double-skin circular tubes in compression, Compos Struct 133 (2015); 1276–83.
  • [7] S. H. Boukhalkhal, L.F.D.C. Neves, W. Madi, Dynamic behavior of concrete filled steel tubular columns. Int J Struct Integr 10 (2) (2019)244–64.
  • [8] S. Etli, E.M. Güneyisi, Seismic performance evaluation of regular and irregular composite moment resisting frames, Lat Am J Solids Struct 17 (7) (2020)1–22.
  • [9] S. Etli, E.M. Güneyisi, Assessment of seismic behavior factor of code-designed steel–concrete composite buildings, Arab J Sci Eng 46 (5) (2021)4271–92.
  • [10] S. Etli, E.M. Güneyisi, Response of steel buildings under near and far field earthquakes, Civ Eng Beyond Limits 1 (2) (2020)24–30.
  • [11] Regulation on Design, Calculation and Construction Principles of Steel Structures, (2016)
  • [12] TBDY-2018, Turkey Building Earthquake Regulation, (2018)
  • [13] SeismoSoft, SeismoStruct: A computer software for static and dynamic nonlinear analysis of framed structures, (2018)
  • [14] Turkey Disaster and Emergency Management Presidency, Turkey Earthquake Hazard Maps, https://tdth.afad.gov.tr/ (2020)
  • [15] TS-498. Yapı Elemanlarının Boyutlandırılmasında Alınacak Yüklerin Hesap Değerleri. Türk Stand Enstitüsü (1987)
  • [16] TADAS, Turkey Acceleration Database and Analysis System (TADAS), https://tadas.afad.gov.tr/map (2021)
  • [17] G. Della Corte, G. De Matteis, R. Landolfo, Influence of connection modelling on seismic response of moment resisting steel frames. Moment resistant connections of steel buildings frames in seismic areas, E. & FN Spon, London, (2000)485-512.
  • [18] R. Simoes, L.S. Silva, P.J.S. Cruz, Cyclic behaviour of end-plate beam-to-column composite joints, Steel Compos Struct 1 (3) (2001)355–76.
  • [19] M.F.B. Shamsudin, Analytical tool for modeling the cyclic behaviour of extended end-plate, PhD Thesis. Universidade de Coimbra (2014)
  • [20] P. Nogueiro, L.S. Silva Da, R. Bento, R. Simões, Calibration of model parameters for the cyclic response of end-plate beam-to-column steel-concrete composite joints, Steel Compos Struct 9 (1) (2009)39–58.
  • [21] J.P. Jaspart, K. Weynand, Design of joints in steel and composite structures, Des Joints Steel Compos Struct (2016)1–388.
  • [22] D. Vamvatsikos, C.A. Cornell, Direct estimation of the seismic demand and capacity of MDOF systems through Incremental Dynamic Analysis of an SDOF approximation, J Struct Eng 131 (4) (2005)589–99.
  • [23] E. Miranda, V.V. Bertero, Evaluation of strength reduction factors for earthquake-resistant design, Earthq Spectra 10 (2) (1994)357–79.
  • [24] A.S. Elnashai, L. Sarno Di, Fundamentals of earthquake engineering: from source to fragility, 2nd Edition, John Wiley & Sons (2015).
  • [25] A. Whittaker, G. Hart, C. Rojahn, Seismic response modification factors, J Struct Eng American Society of Civil Engineers 125 (4) (1999)438–44.
  • [26] A.S. Elnashai, A.M. Mwafy, Overstrength and force reduction factors of multistorey reinforced-concrete buildings, Struct Des Tall Build Wiley Online Library 11 (5) (2002)329–51.
  • [27] A.M. Mwafy, A.S. Elnashai, Static pushover versus dynamic collapse analysis of RC buildings, Eng Struct 23 (5) (2001)407–24.
  • [28] A.M. Mwafy, Seismic performance of code-designed RC buildings, PhD Thesis, University of London (2001).

TBDY 2018 İle Tasarlanan Çelik-Beton Kompozit Yapıların Performansının Parametrik Analizi

Year 2022, , 7 - 16, 28.06.2022
https://doi.org/10.46460/ijiea.1029942

Abstract

Bu çalışmada, ÇYTHYE 2016 ve TBDY 2018 kullanılarak tasarlanan çelik-beton kompozit binaların sismik davranışı incelenmiştir. Bu amaçla kat sayısı 5, 10, 15 ve 20 olan beton dolgulu çelik tüp kolonlu ve kompozit kirişlerinde oluşan kompozit moment dayanımlı çerçeve binalar modellenmiştir. Binalar yüksek süneklik (DCH) seviyelerinde tasarlanmıştır. DCH sınıfı yapıların tasarımı esansında yönetmeliklerde verilen deprem haritasından seçilen bölgede, 0.79 g PGA için ZA zemin sınıfı için tasarım gerçekleştirilmiştir. Çalışma kapsamında yapıların tasarımı ve performans değerlendirmesi sırasında SeismoStruct yazılımı kullanılmıştır. Doğrusal olmayan statik itme analizleri ile birlikte artımlı dinamik analizler kullanıldı. Statik itme analizinde yanal yükün tüşeyde düzgün ve üçgen yük dağılımları benimsenmiştir. Dinamik analizde ise 16 deprem yer hareketi igili tasarım alanına göre AFAD veri tabanlarından elde edilerek kullanılmıştır. Kat sayısının değişimine bağlı olarak CMRF'lerin sismik davranışlarının değişimi doğrusal olmayan analiz sonuçları kullanılarak araştırılmıştır. Buna göre, CMRF yapıları için yanal tepki, aşırı güç faktörleri ve süneklik faktörlerindeki varyasyon karşılaştırmalı olarak sunulmaktadır. Ayrıca dinamik ve statik doğrusal olmayan analizleri esnasında IDR değişimleri esnasında kesit deformasyon kapasiteleri araştırılmıştır. Tüm CMRF'lerin davranış faktörü, özellikle vaka çalışmasında incelenen CMRF'ler olmak üzere tasarım varsayımlarına göre performanslarının beklenenin üzerinde olduğu ortaya konmuştur.

References

  • [1] M. Inel, H.B. Ozmen, H. Bilgin, Re-evaluation of building damage during recent earthquakes in Turkey, Eng Struct 30 (2) (2008)412–27.
  • [2] B. Sevim, A.C. Altunışık, Kompozit Kolon Elemanların Modal Davranışlarının Belirlenmesi, DÜMF Mühendislik Derg (212) (2017)13–24.
  • [3] M. Pecce, C. Amadio, F. Rossi, G. Rinaldin, Non-linear behaviour of steel-concrete composite moment resisting frames, 15th World Conf Earthq Eng (2012)
  • [4] G.S. Kamaris, K.A. Skalomenos, G.D. Hatzigeorgiou, D.E. Beskos, Seismic damage estimation of in-plane regular steel/concrete composite moment resisting frames, Eng Struct Elsevier Ltd 115 (5) (2016)67–77.
  • [5] N. Jianguo, H. Yuan, Y. Weijian, F. Jiansheng, Seismic behavior of CFRSTC composite frames considering slab effects, J Constr Steel Res Elsevier Ltd 68 (1) (2012)165–75.
  • [6] Y. Essopjee, M. Dundu, Performance of concrete-filled double-skin circular tubes in compression, Compos Struct 133 (2015); 1276–83.
  • [7] S. H. Boukhalkhal, L.F.D.C. Neves, W. Madi, Dynamic behavior of concrete filled steel tubular columns. Int J Struct Integr 10 (2) (2019)244–64.
  • [8] S. Etli, E.M. Güneyisi, Seismic performance evaluation of regular and irregular composite moment resisting frames, Lat Am J Solids Struct 17 (7) (2020)1–22.
  • [9] S. Etli, E.M. Güneyisi, Assessment of seismic behavior factor of code-designed steel–concrete composite buildings, Arab J Sci Eng 46 (5) (2021)4271–92.
  • [10] S. Etli, E.M. Güneyisi, Response of steel buildings under near and far field earthquakes, Civ Eng Beyond Limits 1 (2) (2020)24–30.
  • [11] Regulation on Design, Calculation and Construction Principles of Steel Structures, (2016)
  • [12] TBDY-2018, Turkey Building Earthquake Regulation, (2018)
  • [13] SeismoSoft, SeismoStruct: A computer software for static and dynamic nonlinear analysis of framed structures, (2018)
  • [14] Turkey Disaster and Emergency Management Presidency, Turkey Earthquake Hazard Maps, https://tdth.afad.gov.tr/ (2020)
  • [15] TS-498. Yapı Elemanlarının Boyutlandırılmasında Alınacak Yüklerin Hesap Değerleri. Türk Stand Enstitüsü (1987)
  • [16] TADAS, Turkey Acceleration Database and Analysis System (TADAS), https://tadas.afad.gov.tr/map (2021)
  • [17] G. Della Corte, G. De Matteis, R. Landolfo, Influence of connection modelling on seismic response of moment resisting steel frames. Moment resistant connections of steel buildings frames in seismic areas, E. & FN Spon, London, (2000)485-512.
  • [18] R. Simoes, L.S. Silva, P.J.S. Cruz, Cyclic behaviour of end-plate beam-to-column composite joints, Steel Compos Struct 1 (3) (2001)355–76.
  • [19] M.F.B. Shamsudin, Analytical tool for modeling the cyclic behaviour of extended end-plate, PhD Thesis. Universidade de Coimbra (2014)
  • [20] P. Nogueiro, L.S. Silva Da, R. Bento, R. Simões, Calibration of model parameters for the cyclic response of end-plate beam-to-column steel-concrete composite joints, Steel Compos Struct 9 (1) (2009)39–58.
  • [21] J.P. Jaspart, K. Weynand, Design of joints in steel and composite structures, Des Joints Steel Compos Struct (2016)1–388.
  • [22] D. Vamvatsikos, C.A. Cornell, Direct estimation of the seismic demand and capacity of MDOF systems through Incremental Dynamic Analysis of an SDOF approximation, J Struct Eng 131 (4) (2005)589–99.
  • [23] E. Miranda, V.V. Bertero, Evaluation of strength reduction factors for earthquake-resistant design, Earthq Spectra 10 (2) (1994)357–79.
  • [24] A.S. Elnashai, L. Sarno Di, Fundamentals of earthquake engineering: from source to fragility, 2nd Edition, John Wiley & Sons (2015).
  • [25] A. Whittaker, G. Hart, C. Rojahn, Seismic response modification factors, J Struct Eng American Society of Civil Engineers 125 (4) (1999)438–44.
  • [26] A.S. Elnashai, A.M. Mwafy, Overstrength and force reduction factors of multistorey reinforced-concrete buildings, Struct Des Tall Build Wiley Online Library 11 (5) (2002)329–51.
  • [27] A.M. Mwafy, A.S. Elnashai, Static pushover versus dynamic collapse analysis of RC buildings, Eng Struct 23 (5) (2001)407–24.
  • [28] A.M. Mwafy, Seismic performance of code-designed RC buildings, PhD Thesis, University of London (2001).
There are 28 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Articles
Authors

Serkan Etli 0000-0003-3093-4106

Publication Date June 28, 2022
Submission Date November 29, 2021
Published in Issue Year 2022

Cite

APA Etli, S. (2022). Parametric Analysis of the Performance of Steel-Concrete Composite Structures Designed with TBDY 2018. International Journal of Innovative Engineering Applications, 6(1), 7-16. https://doi.org/10.46460/ijiea.1029942
AMA Etli S. Parametric Analysis of the Performance of Steel-Concrete Composite Structures Designed with TBDY 2018. ijiea, IJIEA. June 2022;6(1):7-16. doi:10.46460/ijiea.1029942
Chicago Etli, Serkan. “Parametric Analysis of the Performance of Steel-Concrete Composite Structures Designed With TBDY 2018”. International Journal of Innovative Engineering Applications 6, no. 1 (June 2022): 7-16. https://doi.org/10.46460/ijiea.1029942.
EndNote Etli S (June 1, 2022) Parametric Analysis of the Performance of Steel-Concrete Composite Structures Designed with TBDY 2018. International Journal of Innovative Engineering Applications 6 1 7–16.
IEEE S. Etli, “Parametric Analysis of the Performance of Steel-Concrete Composite Structures Designed with TBDY 2018”, ijiea, IJIEA, vol. 6, no. 1, pp. 7–16, 2022, doi: 10.46460/ijiea.1029942.
ISNAD Etli, Serkan. “Parametric Analysis of the Performance of Steel-Concrete Composite Structures Designed With TBDY 2018”. International Journal of Innovative Engineering Applications 6/1 (June 2022), 7-16. https://doi.org/10.46460/ijiea.1029942.
JAMA Etli S. Parametric Analysis of the Performance of Steel-Concrete Composite Structures Designed with TBDY 2018. ijiea, IJIEA. 2022;6:7–16.
MLA Etli, Serkan. “Parametric Analysis of the Performance of Steel-Concrete Composite Structures Designed With TBDY 2018”. International Journal of Innovative Engineering Applications, vol. 6, no. 1, 2022, pp. 7-16, doi:10.46460/ijiea.1029942.
Vancouver Etli S. Parametric Analysis of the Performance of Steel-Concrete Composite Structures Designed with TBDY 2018. ijiea, IJIEA. 2022;6(1):7-16.