Research Article
BibTex RIS Cite

Karbon Eklenmiş NiTi Şekil Bellek Alaşımlarının Isı Davranışı ve Mikro Yapısının İncelenmesi

Year 2022, , 91 - 96, 28.06.2022
https://doi.org/10.46460/ijiea.1066657

Abstract

Bu çalışmanın amacı, ark eritme yöntemiyle üretilen NiTiC1 ve NiTiC2 şekil hafızalı alaşımların (SHA) termal ve mikroyapısal analizini yapmaktır. Alaşımlarda ki Ti ve C elementlerinin konsantrasyonunun değiştirilmesi tek adımlı B2↔B19' şeklinde olan faz dönüşümünü değişmediği, ancak histerezis sıcaklığı, entalpi, entropi ve Gibbs serbest enerjilerinin dönüşüm sıcaklıklarına bağlı olarak değiştiği görüldü. C elementinin miktarının artması, tane boyutunun azalmasına ve dolayısıyla alaşımın elastik enerji miktarının azalmasına neden olduğu belirlendi. DSC analizlerinde oda sıcaklığının altında gözlemlenen martensit dönüşümünün varlığı, oda sıcaklığında alınan SEM ve XRD analizlerinde gözlenmedi. XRD analizlerinde B2austenit, Ni4Ti3 çökelti ve TiC fazlarının varlığı tespit edildi ve bu fazların varlığı SEM-EDX analizi ile desteklendi. Belirlenen fazlar dışında tane sınırları da net olarak görüldü.

Supporting Institution

Bitlis Eren Üniversitesi Bilimsel Araştırma Projeleri Koordinatörlüğü

Project Number

BEBAP 2021.09

References

  • Referans1 Otsuka, K., & Ren, X. (2005). Physical metallurgy of Ti–Ni-based shape memory alloys. Progress in materials science, 50(5), 511-678.
  • Referans2 Jani, J. M., Leary, M., Subic, A., & Gibson, M. A. (2014). A review of shape memory alloy research, applications and opportunities. Materials & Design (1980-2015), 56, 1078-1113.
  • Referans3 Balci, E., & Dağdelen, F. Investigate of Microhardness and Microstructure of Ti-Ni-Nb-X (Ta and V) Shape Memory Alloys. International Journal of Innovative Engineering Applications, 5(2), 131-135.
  • Referans4 Dagdelen, F., & Ercan, E. (2014). The surface oxidation behavior of Ni–45.16%Ti shape memory alloys at different temperatures. Journal of Thermal Analysis and Calorimetry, 115(1), 561-565.
  • Referans5 Kök, M., Al-Jaf, A. O. A., Çirak, Z. D., Qader, I. N., & Özen, E. (2020). Effects of heat treatment temperatures on phase transformation, thermodynamical parameters, crystal microstructure, and electrical resistivity of NiTiV shape memory alloy. Journal of Thermal Analysis and Calorimetry, 139(6), 3405-3413.
  • Referans6 Kaya, I., Karaca, H., Nagasako, M., & Kainuma, R. (2020). Effects of aging temperature and aging time on the mechanism of martensitic transformation in nickel-rich NiTi shape memory alloys. Materials Characterization, 159, 110034.
  • Referans7 Kaya, I., Özdemir, Y., Kaya, E., & Keskin, M. E. (2020). The heating–cooling rate effect on thermal properties of high nickel-rich NiTi shape memory alloy. Journal of Thermal Analysis and Calorimetry, 139(2), 817-822.
  • Referans8 Eskil, M. (2013). The effect of aging temperature on transformation parameters of porous NiTi shape memory alloy fabricated by SHS. Russian Journal of Non-Ferrous Metals, 54(1), 104-111.
  • Referans9 Dal, S., Demirel, B., & Eskil, M. (2021). The effects of homogenization time on the crystal structure and hardness of NiMnGaMo alloy. Engineering Science and Technology, an International Journal, 24(2), 493-502.
  • Referans10 Siddharth, M., & Sarada, B. (2021). Effect of heat treatment time and temperature variants on Ni-Ti shape memory alloy. Materials Today: Proceedings.
  • Referans11 Naji, H., Khalil-Allafi, J., & Khalili, V. (2020). Microstructural characterization and quantitative phase analysis of Ni-rich NiTi after stress assisted aging for long times using the Rietveld method. Materials Chemistry and Physics, 241, 122317.
  • Referans12 Ryklina, E. P., Polyakova, K. A., & Prokoshkin, S. D. (2021). Role of Nickel Content in One-Way and Two-Way Shape Recovery in Binary Ti-Ni Alloys. Metals, 11(1), 119.
  • Referans13 Belyaev, S., Resnina, N., Iaparova, E., Ivanova, A., Rakhimov, T., & Andreev, V. (2019). Influence of chemical composition of NiTi alloy on the martensite stabilization effect. Journal of alloys and compounds, 787, 1365-1371.
  • Referans14 Qin, Q., Peng, H., Fan, Q., Zhang, L., & Wen, Y. (2018). Effect of second phase precipitation on martensitic transformation and hardness in highly Ni-rich NiTi alloys. Journal of alloys and compounds, 739, 873-881.
  • Referans15 Frenzel, J., Zhang, Z., Somsen, C., Neuking, K., & Eggeler, G. (2007). Influence of carbon on martensitic phase transformations in NiTi shape memory alloys. Acta materialia, 55(4), 1331-1341.
  • Referans16 Goryczka, T. (2008). Martensitic transformation in Ni–Ti–Co strip produced by twin roll casting. Materials Science and Engineering: A, 481, 676-679.
  • Referans17 Tong, Y.-x., Liu, J.-t., Feng, C., Liang, C.-q., Bing, T., Li, L., & Zheng, Y.-f. (2014). Effect of aging on martensitic transformation and superelasticity of TiNiCr shape memory alloy. Transactions of Nonferrous Metals Society of China, 24(8), 2598-2605.
  • Referans18 Basu, R., Eskandari, M., Upadhayay, L., Mohtadi-Bonab, M., & Szpunar, J. A. (2015). A systematic investigation on the role of microstructure on phase transformation behavior in Ni–Ti–Fe shape memory alloys. Journal of alloys and compounds, 645, 213-222.
  • Referans19 Wang, M., Jiang, M., Liao, G., Guo, S., & Zhao, X. (2012). Martensitic transformation involved mechanical behaviors and wide hysteresis of NiTiNb shape memory alloys. Progress in natural science: materials international, 22(2), 130-138.
  • Referans20 Ramaiah, K., Saikrishna, C., & Bhaumik, S. (2014). Ni24. 7Ti50. 3Pd25. 0 high temperature shape memory alloy with narrow thermal hysteresis and high thermal stability. Materials & Design (1980-2015), 56, 78-83.
  • Referans21 Fraj, B. B., Zghal, S., & Tourki, Z. (2017). DSC investigation on entropy and enthalpy changes in Ni-rich NiTi shape memory alloy at various cooling/heating rates. Paper presented at the International Conference Design and Modeling of Mechanical Systems.
  • Referans22 Wang, J., Pan, Z., Wang, Y., Wang, L., Su, L., Cuiuri, D., . . . Li, H. (2020). Evolution of crystallographic orientation, precipitation, phase transformation and mechanical properties realized by enhancing deposition current for dual-wire arc additive manufactured Ni-rich NiTi alloy. Additive Manufacturing, 34, 101240.
  • Referans23 Pandolfi, G. S., Martins, S. C., Buono, V. T., & Santos, L. A. (2020). Precipitation kinetics of Ti3Ni4 and multistage martensitic transformation in an aged Ni–rich Ni–Ti shape memory alloy. Journal of Materials Research and Technology, 9(4), 9162-9173.
  • Referans24 Chen, F., Tong, Y., Lu, X., Wang, X., Tian, B., Li, L., . Ma, L. W. (2011). Effect of graphite addition on martensitic transformation and damping behavior of NiTi shape memory alloy. Materials Letters, 65(7), 1073-1075.
  • Referans25 Vallauri, D., Adrián, I. A., & Chrysanthou, A. (2008). TiC–TiB2 composites: A review of phase relationships, processing and properties. Journal of the European Ceramic Society, 28(8), 1697-1713.
  • Referans26 Qader, I. N., Kok, M., & Cirak, Z. D. (2021). The effects of substituting Sn for Ni on the thermal and some other characteristics of NiTiSn shape memory alloys. Journal of Thermal Analysis and Calorimetry, 145(2), 279-288.
  • Referans27 Tankut, A., Köytepe, S., Bulut, N., & Kaygili, O. Ni Katkısının Fe2O3’ün Yapısal Özellikleri Üzerine Etkilerinin Araştırılması. International Journal of Innovative Engineering Applications, 5(2), 81-87.
  • Referans28 Chen, J., Yin, H., & Sun, Q. (2020). Effects of grain size on fatigue crack growth behaviors of nanocrystalline superelastic NiTi shape memory alloys. Acta materialia, 195, 141-150.
  • Referans29 Shi, X., Cui, L., Jiang, D., Yu, C., Guo, F., Yu, M., . . . Liu, Y. (2014). Grain size effect on the R-phase transformation of nanocrystalline NiTi shape memory alloys. Journal of materials science, 49(13), 4643-4647.
  • Referans30 Mohammed, S. S., Kok, M., Qader, I. N., Kanca, M. S., Ercan, E., Dağdelen, F., & Aydoğdu, Y. (2020). Influence of Ta Additive into Cu 84− x Al 13 Ni 3 (wt%) Shape Memory Alloy Produced by Induction Melting. Iranian Journal of Science and Technology, Transactions A: Science, 44(4), 1167-1175.
  • Referans31 Callister, W. D., & Rethwisch, D. G. (2007). Materials science and engineering: an introduction (Vol. 7): John wiley & sons New York.
  • Referans32 Ercan, E., Dagdelen, F., & Qader, I. (2020). Effect of tantalum contents on transformation temperatures, thermal behaviors and microstructure of CuAlTa HTSMAs. Journal of Thermal Analysis and Calorimetry, 139(1), 29-36.
  • Referans33 Dagdelen, F., Balci, E., Qader, I., Ozen, E., Kok, M., Kanca, M., Mohammed, S. (2020). Influence of the Nb content on the microstructure and phase transformation properties of NiTiNb shape memory alloys. JOM, 72(4), 1664-1672.
  • Referans34 Dagdelen, F., Kok, M., & Qader, I. (2019). Effects of Ta content on thermodynamic properties and transformation temperatures of shape memory NiTi alloy. Metals and Materials International, 25(6), 1420-1427.

Investigation of Thermal Behavior and Microstructure of Carbon Added NiTi Shape Memory Alloys

Year 2022, , 91 - 96, 28.06.2022
https://doi.org/10.46460/ijiea.1066657

Abstract

The aim of this study is to perform thermal and microstructural analysis of NiTiC1 and NiTiC2 shape memory alloys (SMAs), produced by arc-melting method. Changing the concentration of Ti and C elements did not change the phase transformation of the alloy as one-stage B2↔B19', but it was observed that the hysteresis temperature, enthalpy, entropy and Gibbs free energies changed depending on the transformation temperatures. Increasing the amount of C element caused a decrease in the grain size and thus a decrease in the elastic energy amount of the alloy. The presence of martensite transformation observed under room temperature in DSC analyzes was not observed in SEM and XRD analyzes taken at room temperature. The presence of B2 austenit, Ni4Ti3 precipitate and TiC phases were detected in XRD analyzes and the presence of these phases was supported by SEM-EDX analysis. Apart from the determined phases, grain boundaries were also clearly seen.

Project Number

BEBAP 2021.09

References

  • Referans1 Otsuka, K., & Ren, X. (2005). Physical metallurgy of Ti–Ni-based shape memory alloys. Progress in materials science, 50(5), 511-678.
  • Referans2 Jani, J. M., Leary, M., Subic, A., & Gibson, M. A. (2014). A review of shape memory alloy research, applications and opportunities. Materials & Design (1980-2015), 56, 1078-1113.
  • Referans3 Balci, E., & Dağdelen, F. Investigate of Microhardness and Microstructure of Ti-Ni-Nb-X (Ta and V) Shape Memory Alloys. International Journal of Innovative Engineering Applications, 5(2), 131-135.
  • Referans4 Dagdelen, F., & Ercan, E. (2014). The surface oxidation behavior of Ni–45.16%Ti shape memory alloys at different temperatures. Journal of Thermal Analysis and Calorimetry, 115(1), 561-565.
  • Referans5 Kök, M., Al-Jaf, A. O. A., Çirak, Z. D., Qader, I. N., & Özen, E. (2020). Effects of heat treatment temperatures on phase transformation, thermodynamical parameters, crystal microstructure, and electrical resistivity of NiTiV shape memory alloy. Journal of Thermal Analysis and Calorimetry, 139(6), 3405-3413.
  • Referans6 Kaya, I., Karaca, H., Nagasako, M., & Kainuma, R. (2020). Effects of aging temperature and aging time on the mechanism of martensitic transformation in nickel-rich NiTi shape memory alloys. Materials Characterization, 159, 110034.
  • Referans7 Kaya, I., Özdemir, Y., Kaya, E., & Keskin, M. E. (2020). The heating–cooling rate effect on thermal properties of high nickel-rich NiTi shape memory alloy. Journal of Thermal Analysis and Calorimetry, 139(2), 817-822.
  • Referans8 Eskil, M. (2013). The effect of aging temperature on transformation parameters of porous NiTi shape memory alloy fabricated by SHS. Russian Journal of Non-Ferrous Metals, 54(1), 104-111.
  • Referans9 Dal, S., Demirel, B., & Eskil, M. (2021). The effects of homogenization time on the crystal structure and hardness of NiMnGaMo alloy. Engineering Science and Technology, an International Journal, 24(2), 493-502.
  • Referans10 Siddharth, M., & Sarada, B. (2021). Effect of heat treatment time and temperature variants on Ni-Ti shape memory alloy. Materials Today: Proceedings.
  • Referans11 Naji, H., Khalil-Allafi, J., & Khalili, V. (2020). Microstructural characterization and quantitative phase analysis of Ni-rich NiTi after stress assisted aging for long times using the Rietveld method. Materials Chemistry and Physics, 241, 122317.
  • Referans12 Ryklina, E. P., Polyakova, K. A., & Prokoshkin, S. D. (2021). Role of Nickel Content in One-Way and Two-Way Shape Recovery in Binary Ti-Ni Alloys. Metals, 11(1), 119.
  • Referans13 Belyaev, S., Resnina, N., Iaparova, E., Ivanova, A., Rakhimov, T., & Andreev, V. (2019). Influence of chemical composition of NiTi alloy on the martensite stabilization effect. Journal of alloys and compounds, 787, 1365-1371.
  • Referans14 Qin, Q., Peng, H., Fan, Q., Zhang, L., & Wen, Y. (2018). Effect of second phase precipitation on martensitic transformation and hardness in highly Ni-rich NiTi alloys. Journal of alloys and compounds, 739, 873-881.
  • Referans15 Frenzel, J., Zhang, Z., Somsen, C., Neuking, K., & Eggeler, G. (2007). Influence of carbon on martensitic phase transformations in NiTi shape memory alloys. Acta materialia, 55(4), 1331-1341.
  • Referans16 Goryczka, T. (2008). Martensitic transformation in Ni–Ti–Co strip produced by twin roll casting. Materials Science and Engineering: A, 481, 676-679.
  • Referans17 Tong, Y.-x., Liu, J.-t., Feng, C., Liang, C.-q., Bing, T., Li, L., & Zheng, Y.-f. (2014). Effect of aging on martensitic transformation and superelasticity of TiNiCr shape memory alloy. Transactions of Nonferrous Metals Society of China, 24(8), 2598-2605.
  • Referans18 Basu, R., Eskandari, M., Upadhayay, L., Mohtadi-Bonab, M., & Szpunar, J. A. (2015). A systematic investigation on the role of microstructure on phase transformation behavior in Ni–Ti–Fe shape memory alloys. Journal of alloys and compounds, 645, 213-222.
  • Referans19 Wang, M., Jiang, M., Liao, G., Guo, S., & Zhao, X. (2012). Martensitic transformation involved mechanical behaviors and wide hysteresis of NiTiNb shape memory alloys. Progress in natural science: materials international, 22(2), 130-138.
  • Referans20 Ramaiah, K., Saikrishna, C., & Bhaumik, S. (2014). Ni24. 7Ti50. 3Pd25. 0 high temperature shape memory alloy with narrow thermal hysteresis and high thermal stability. Materials & Design (1980-2015), 56, 78-83.
  • Referans21 Fraj, B. B., Zghal, S., & Tourki, Z. (2017). DSC investigation on entropy and enthalpy changes in Ni-rich NiTi shape memory alloy at various cooling/heating rates. Paper presented at the International Conference Design and Modeling of Mechanical Systems.
  • Referans22 Wang, J., Pan, Z., Wang, Y., Wang, L., Su, L., Cuiuri, D., . . . Li, H. (2020). Evolution of crystallographic orientation, precipitation, phase transformation and mechanical properties realized by enhancing deposition current for dual-wire arc additive manufactured Ni-rich NiTi alloy. Additive Manufacturing, 34, 101240.
  • Referans23 Pandolfi, G. S., Martins, S. C., Buono, V. T., & Santos, L. A. (2020). Precipitation kinetics of Ti3Ni4 and multistage martensitic transformation in an aged Ni–rich Ni–Ti shape memory alloy. Journal of Materials Research and Technology, 9(4), 9162-9173.
  • Referans24 Chen, F., Tong, Y., Lu, X., Wang, X., Tian, B., Li, L., . Ma, L. W. (2011). Effect of graphite addition on martensitic transformation and damping behavior of NiTi shape memory alloy. Materials Letters, 65(7), 1073-1075.
  • Referans25 Vallauri, D., Adrián, I. A., & Chrysanthou, A. (2008). TiC–TiB2 composites: A review of phase relationships, processing and properties. Journal of the European Ceramic Society, 28(8), 1697-1713.
  • Referans26 Qader, I. N., Kok, M., & Cirak, Z. D. (2021). The effects of substituting Sn for Ni on the thermal and some other characteristics of NiTiSn shape memory alloys. Journal of Thermal Analysis and Calorimetry, 145(2), 279-288.
  • Referans27 Tankut, A., Köytepe, S., Bulut, N., & Kaygili, O. Ni Katkısının Fe2O3’ün Yapısal Özellikleri Üzerine Etkilerinin Araştırılması. International Journal of Innovative Engineering Applications, 5(2), 81-87.
  • Referans28 Chen, J., Yin, H., & Sun, Q. (2020). Effects of grain size on fatigue crack growth behaviors of nanocrystalline superelastic NiTi shape memory alloys. Acta materialia, 195, 141-150.
  • Referans29 Shi, X., Cui, L., Jiang, D., Yu, C., Guo, F., Yu, M., . . . Liu, Y. (2014). Grain size effect on the R-phase transformation of nanocrystalline NiTi shape memory alloys. Journal of materials science, 49(13), 4643-4647.
  • Referans30 Mohammed, S. S., Kok, M., Qader, I. N., Kanca, M. S., Ercan, E., Dağdelen, F., & Aydoğdu, Y. (2020). Influence of Ta Additive into Cu 84− x Al 13 Ni 3 (wt%) Shape Memory Alloy Produced by Induction Melting. Iranian Journal of Science and Technology, Transactions A: Science, 44(4), 1167-1175.
  • Referans31 Callister, W. D., & Rethwisch, D. G. (2007). Materials science and engineering: an introduction (Vol. 7): John wiley & sons New York.
  • Referans32 Ercan, E., Dagdelen, F., & Qader, I. (2020). Effect of tantalum contents on transformation temperatures, thermal behaviors and microstructure of CuAlTa HTSMAs. Journal of Thermal Analysis and Calorimetry, 139(1), 29-36.
  • Referans33 Dagdelen, F., Balci, E., Qader, I., Ozen, E., Kok, M., Kanca, M., Mohammed, S. (2020). Influence of the Nb content on the microstructure and phase transformation properties of NiTiNb shape memory alloys. JOM, 72(4), 1664-1672.
  • Referans34 Dagdelen, F., Kok, M., & Qader, I. (2019). Effects of Ta content on thermodynamic properties and transformation temperatures of shape memory NiTi alloy. Metals and Materials International, 25(6), 1420-1427.
There are 34 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Articles
Authors

Ercan Ercan 0000-0002-1583-6068

Project Number BEBAP 2021.09
Publication Date June 28, 2022
Submission Date February 1, 2022
Published in Issue Year 2022

Cite

APA Ercan, E. (2022). Investigation of Thermal Behavior and Microstructure of Carbon Added NiTi Shape Memory Alloys. International Journal of Innovative Engineering Applications, 6(1), 91-96. https://doi.org/10.46460/ijiea.1066657
AMA Ercan E. Investigation of Thermal Behavior and Microstructure of Carbon Added NiTi Shape Memory Alloys. ijiea, IJIEA. June 2022;6(1):91-96. doi:10.46460/ijiea.1066657
Chicago Ercan, Ercan. “Investigation of Thermal Behavior and Microstructure of Carbon Added NiTi Shape Memory Alloys”. International Journal of Innovative Engineering Applications 6, no. 1 (June 2022): 91-96. https://doi.org/10.46460/ijiea.1066657.
EndNote Ercan E (June 1, 2022) Investigation of Thermal Behavior and Microstructure of Carbon Added NiTi Shape Memory Alloys. International Journal of Innovative Engineering Applications 6 1 91–96.
IEEE E. Ercan, “Investigation of Thermal Behavior and Microstructure of Carbon Added NiTi Shape Memory Alloys”, ijiea, IJIEA, vol. 6, no. 1, pp. 91–96, 2022, doi: 10.46460/ijiea.1066657.
ISNAD Ercan, Ercan. “Investigation of Thermal Behavior and Microstructure of Carbon Added NiTi Shape Memory Alloys”. International Journal of Innovative Engineering Applications 6/1 (June 2022), 91-96. https://doi.org/10.46460/ijiea.1066657.
JAMA Ercan E. Investigation of Thermal Behavior and Microstructure of Carbon Added NiTi Shape Memory Alloys. ijiea, IJIEA. 2022;6:91–96.
MLA Ercan, Ercan. “Investigation of Thermal Behavior and Microstructure of Carbon Added NiTi Shape Memory Alloys”. International Journal of Innovative Engineering Applications, vol. 6, no. 1, 2022, pp. 91-96, doi:10.46460/ijiea.1066657.
Vancouver Ercan E. Investigation of Thermal Behavior and Microstructure of Carbon Added NiTi Shape Memory Alloys. ijiea, IJIEA. 2022;6(1):91-6.