Research Article
BibTex RIS Cite

Experimental Data and Modeling for the Adsorption/Desorption of Tetracycline and Diclofenac on the Agricultural Soils

Year 2022, , 286 - 292, 30.12.2022
https://doi.org/10.46460/ijiea.1141731

Abstract

The adsorption-desorption characteristics of tetracycline and diclofenac onto two different agricultural soils (S1 and S2) were investigated using the batch equilibrium method. The adsorption experiments were used to optimize the two variable parameters (contact time (5-120 min), initial pollutant concentration (5-300 mg/L)) on the adsorption of tetracycline and diclofenac. The adsorption kinetics for tetracycline and diclofenac onto soil are well described by a bi-exponential adsorption model characterized by fast and slow adsorption rates. Non-linear adsorption curves fitted well to the Langmuir, Freundlich and Temkin equations. The maximum adsorption capacity (qm) of tetracycline and diclofenac onto the soils S1 and S2 were calculated to be 55.90 mg/g, 41.92 mg/g, 26 mg/g and 6.42 mg/g, respectively. Kd, Koc, foc and qa values were calculated. The adsorption efficiency of tetracycline and diclofenac by the soils S1 and S2 was over 97%. The Kd parameters for the adsorption of tetracycline and diclofenac onto the soils S1 and S2 were found to be 3537 L/kg, 654 L/kg, 1669 L/kg and 3105 L/kg, respectively. The reversibility of the adsorption process was evaluated by desorption experiments using different concentrations of HDTMA and Triton-x surfactants. The desorption rates were higher for diclofenac than for tetracycline.

Supporting Institution

This study was supported by Cumhuriyet University, Scientific Research Project Funding

Project Number

M-581

Thanks

This study was supported by Cumhuriyet University, Scientific Research Project Funding (CUBAP/M-581)

References

  • [1] Mejías, C., Martín, J., Santos, J. L., Aparicio, I., & Alonso, E. (2021). Occurrence of pharmaceuticals and their metabolites in sewage sludge and soil: A review on their distribution and environmental risk assessment. Trends Environ. Anal. Chem., 30, e00125.
  • [2] Peiris, C., Gunatilake, S. R., Mlsna, T. E., Mohan, D., & Vithanage, M. 2017. Biochar based removal of antibiotic sulfonamides and tetracyclines in aquatic environments: a critical review. Bioresour. Technol., 246, 150-159.
  • [3] Kümmerer, K. (2009). The presence of pharmaceuticals in the environment due to human use-present knowledge and future challenges. J. Environ. Manage., 90, 2354-2366.
  • [4] Bian, C., Wang, L., Cui, Z., Dong, Z., Shi, X., Li, Y., & Li, B. (2022). Adsorption-desorption and transport behavior of pydiflumetofen in eight different types of soil. Ecotoxicol. Environ. Saf., 234, 113378.
  • [5] Durak, S. G. (2020). Removal of maxilon golden yellow GL EC 400% from the wastewater by adsorption method using different clays. Sakarya University Journal of Science, 24, 5, 1081-1093.
  • [6] OECD. (2000). Adsorption-desorption using a batch equilibrium method. OECD Guideline for the Testing of Chemicals 106. Organization for Economic Cooperation and Development, Paris, France.
  • [7] Yu, C., Bi, E. (2019). Adsorption site-dependent transport of diclofenac in water saturated minerals and reference soils. Chemosphere, 236, 124256.
  • [8] Shirani, Z., Song, H., & Bhatnagar, A. (2020). Efficient removal of diclofenac and cephalexin from aqueous solution using Anthriscus sylvestris-derived activated biochar. Sci. Total. Environ., 745, 140789.
  • [9] Huijbers, P. M. C., Flach, C. F., & Larsson, D. G. J. (2019). A conceptual framework for the environmental surveillance of antibiotics and antibiotic resistance. Environ. Int., 130, 104880.
  • [10] Sun, H., Shi, X., Mao, J., & Zhu, D. (2010). Tetracycline sorption to coal and soil humic acids: an examination of humic structural heterogeneity. Environ. Toxicol. Chem., 29, 1934-1942.
  • [11] Li, Y., Su, P., Li, Y., Wen, K., Bi, G., & Cox, M. (2018). Adsorption-desorption and degradation of insecticides clothianidin and thiamethoxam in agricultural soils. Chemosphere, 207, 708-714.
  • [12] Türk, H., Hanay, Ö. (2017). Nano boyutlu sıfır değerlikli demir ile sulu ortamlarda klortetrasiklin giderim mekanizmasının incelenmesi. Sakarya University Journal of Science, 21(5), 1000-1007.
  • [13] Oral, O., Kantar, C. (2019). Diclofenac removal by pyrite-Fenton process: Performance in batch and fixed-bed continuous flow systems. Sci. Total Environ., 664, 817-823.
  • [14] Vitiello, G., Iervolino, G., Imparato, C., Rea, I., Borbone, F., De Stefano, L., Aronne, A., & Vaiano, V. (2021). F-doped ZnO nano- and meso-crystals with enhanced photocatalytic activity in diclofenac degradation. Sci. Total Environ., 762, 143066.
  • [15] Doretto, K. M., Peruchi, L. M., & Rath, S. (2014). Sorption and desorption of sulfadimethoxine, sulfaquinoxaline and sulfamethazine antimicrobials in Brazilian soils. Sci. Total Environ., 476-477, 406-414.
  • [16] Álvarez-Esmorís, C., Conde-Cid, M., Ferreira-Coelho, G., Fernández-Sanjurjo, M. J., Núñez-Delgado, A., Álvarez-Rodríguez, E., & Arias-Estévez, M. (2020). Adsorption/desorption of sulfamethoxypyridazine and enrofloxacin in agricultural soils. Sci. Total Environ., 706, 136015.
  • [17] Skrásková, K., Santos, L. H. M. L. M., Satínsky, D., Pena, A., Conceiçao, M., Montenegro, B. S. M., Solich, P., & Nováková, L. (2013). Fast and sensitive UHPLC methods with fluorescence and tandem mass spectrometry detection for the determination of tetracycline antibiotics in surface waters. J. Chromatogr. B., 927, 201-208. [18] https://go.drugbank.com/drugs/DB00586. Accessed 29 March 2022.
  • [19] Silah, H., Gül, Ü. D. (2018). Adsorption of everzol black by using Amberlyst A21: isotherm and kinetic studies. Sakarya University Journal of Science, 22(3), 1063-1070.
  • [20] Zhang, Q., Deng, S., Yu, G., & Huang, J. (2011). Removal of perfluorooctane sulfonate from aqueous solution by crosslinked chitosan beads: Sorption kinetics and uptake mechanism. Bioresour. Technol., 102, 2265-2271.
  • [21] Torrent, L., Marguí, E., Queralt, I., Hidalgo M., & Iglesias M. (2019). Interaction of silver nanoparticles with mediterranean agricultural soils: Lab-controlled adsorption and desorption studies. J. Environ. Sci., 83, 205-216.
  • [22] Li, F., Fang, X., Zhou, Z., Liao, X., Zou, J., Yuan, B., & Sun, W. (2019). Adsorption of perfluorinated acids onto soils: kinetics, isotherms, and influences of soil properties. Sci. Total Environ., 649, 504-514.
  • [23] Muendo, B.M., Shikuku, V.O., Getenga, Z.M., Lalah, J.O., Wandiga, S.O., & Rothballer, M. (2021). Adsorption-desorption and leaching behavior of diuron on selected Kenyan agricultural soils. Heliyon, 7, e06073.
  • [24] Giles, C.H., Smith, D., & Huitson, A. (1974). A general treatment and classification of the solute adsorption isotherm I. Theoretical. J. Colloid Interface Sci., 47, 755-765.
  • [25] Calvet, R. (1989). Adsorption of organic chemicals in soils. Environ Health Perspect., 83, 145-177.
  • [26] Weber, J.B., Shea, P.H., & Weed, S.B. (1986) Fluridone retention and release in soils. Soil Sci. Soc. Am. J., 50, 582-588.
  • [27] An, B., Xu, X., Ma, W., Huo, M., Wang, H., Liu, Z., Cheng, G., & Huang, L. (2021). The adsorption-desorption characteristics and degradation kinetics of ceftiofur in different agricultural soils. Ecotoxicol. Environ. Saf., 222, 112503.
  • [28] Zhou W., Zhang, Y., Li, W., Jia, H., Huang, H., & Li, B. (2019). Adsorption isotherms, degradation kinetics, and leaching behaviors of cyanogen and hydrogen cyanide in eight texturally different agricultural soils from China. Ecotoxicol. Environ. Saf., 185, 109704.
  • [29] Conde-Cid, M., Ferreira-Coelho, G., Núñez-Delgado, A., Fernández-Calviño, D., Arias-Estévez, M., Álvarez-Rodríguez, E., & Fernández-Sanjurjo, M.J. (2019). Competitive adsorption of tetracycline, oxytetracycline and chlortetracycline on soils with different pH value and organic matter content. Environmental Research, 178, 108669.
  • [30] Khataee, A.R., Vafaei, F., & Jannatkhah, M. (2013). Biosorption of three textile dyes from contaminated water by filamentous green algal Spirogyra sp.: kinetic, isotherm and thermodynamic studies. Int Biodeterior Biodegradation, 83, 33-40.
  • [31] Teixido, M., Granados, M., Prat, M.D., & Beltran, J.L. (2012). Sorption of tetracyclines onto natural soils: data analysis and prediction. Environ. Sci. Pollut. Res., 19, 3087-3095.
  • [32] Figueroa, R.A., Leonard, A., & Mackay, A.A. (2004). Modeling tetracycline antibiotic sorption to clays. Environ. Sci. Technol., 38, 476-483.
  • [33] Pils, J.R., Laird, D.A. (2007). Sorption of tetracycline and chlortetracycline on K- and Ca saturated soil clays, humic substances, and clay-humic complexes. Environ Sci. Technol., 41, 1928-1933.
  • [34] Conkle, J.L., Lattao, C., White, J.R., & Cook, R.L. (2010). Competitive sorption and desorption behavior for three fluoroquinolone antibiotics in a wastewater treatment wetland soil. Chemosphere, 80, 1353-1359.
  • [35] Zhang, J.O., Dong, Y.H. (2008). Effect of low-molecular-weight organic acids on the adsorption of norfloxacin in typical variable charge soils of China. J. Hazard. Mater., 151, 833-839.
  • [36] Lee, L.S., Carmosini, N., Sassman, S.A.,. Dion, H.M., & Sepulveda, M.S. (2007). Agricultural contributions of antimicrobials and hormones on soil and water quality. Adv. Agron., 93, 1-68.
  • [37] Martinez-Hernandez, V., Meffe, R., Herrera, S., Arranz, E. & de Bustamante, I. (2014). Sorption/desorption tical and personal care products from reclaimed water onto/from a natural sediment. Sci. Total Environ., 472, 273-281.
  • [38] Scheytt, T., Mersmann, P., Lındstadt, R., & Heberer, T. (2005). 1-octanol/water partition coefficients of 5 pharmaceuticals from human medical care: carbamazepine, clofibric acid, diclofenac, ibuprofen, and propyphenazone. Water Air and Soil Pollution, 165(1):3-11.
  • [39] Oleszczuk, P., Xin, B. (2011). Influence of anionic, cationic and nonionic surfactants on adsorption and desorption of oxytetracycline by ultrasonically treated and non-treated multiwalled carbon nanotubes. Chemosphere, 8, 1312-1317.

Tarım Topraklarında Tetrasiklin ve Diklofenak Adsorpsiyonu/Desorpsiyonu için Deneysel Veriler ve Modelleme

Year 2022, , 286 - 292, 30.12.2022
https://doi.org/10.46460/ijiea.1141731

Abstract

Tetrasiklin ve diklofenakın iki farklı tarım toprağına (S1 ve S2) adsorpsiyon-desorpsiyon özellikleri kesikli denge yöntemi kullanılarak araştırılmıştır. Adsorpsiyon deneyleri, tetrasiklin ve diklofenak adsorpsiyonunda iki değişken parametreyi (temas süresi (5-120 dakika), başlangıç kirletici konsantrasyonu (5-300 mg/L)) optimize etmek için kullanılmıştır. Tetrasiklin ve diklofenak için toprak adsorpsiyon kinetiği, hızlı ve yavaş adsorpsiyon oranları ile karakterize edilen iki üslü bir adsorpsiyon modeli ile tanımlanmıştır. Non-linear adsorpsiyon izoterm eğrileri, Langmuir, Freundlich ve Temkin modellerine iyi uyum sağlamıştır. S1 ve S2 topraklarına tetrasiklin ve diklofenakın maksimum adsorpsiyon kapasitesi (qm) sırasıyla 55.90 mg/g, 41.92 mg/g, 26 mg/g ve 6.42 mg/g olarak hesaplanmıştır. Kd, Koc, foc ve qa değerleri hesaplanmıştır. Tetrasiklin ve diklofenakın S1 ve S2 toprakları tarafından adsorpsiyon etkinliği %97'nin üzerindedir. S1 ve S2 topraklarına tetrasiklin ve diklofenak adsorpsiyonu için Kd parametreleri sırasıyla 3537 L/kg, 654 L/kg, 1669 L/kg ve 3105 L/kg olarak bulunmuştur. Adsorpsiyon işleminin tersinebilirliği, farklı konsantrasyonlarda HDTMA ve Triton-x yüzey aktif maddeler kullanılarak desorpsiyon deneyleriyle değerlendirilmiştir. Desorpsiyon oranları diklofenak için tetrasikline göre daha yüksek bulunmuştur.

Project Number

M-581

References

  • [1] Mejías, C., Martín, J., Santos, J. L., Aparicio, I., & Alonso, E. (2021). Occurrence of pharmaceuticals and their metabolites in sewage sludge and soil: A review on their distribution and environmental risk assessment. Trends Environ. Anal. Chem., 30, e00125.
  • [2] Peiris, C., Gunatilake, S. R., Mlsna, T. E., Mohan, D., & Vithanage, M. 2017. Biochar based removal of antibiotic sulfonamides and tetracyclines in aquatic environments: a critical review. Bioresour. Technol., 246, 150-159.
  • [3] Kümmerer, K. (2009). The presence of pharmaceuticals in the environment due to human use-present knowledge and future challenges. J. Environ. Manage., 90, 2354-2366.
  • [4] Bian, C., Wang, L., Cui, Z., Dong, Z., Shi, X., Li, Y., & Li, B. (2022). Adsorption-desorption and transport behavior of pydiflumetofen in eight different types of soil. Ecotoxicol. Environ. Saf., 234, 113378.
  • [5] Durak, S. G. (2020). Removal of maxilon golden yellow GL EC 400% from the wastewater by adsorption method using different clays. Sakarya University Journal of Science, 24, 5, 1081-1093.
  • [6] OECD. (2000). Adsorption-desorption using a batch equilibrium method. OECD Guideline for the Testing of Chemicals 106. Organization for Economic Cooperation and Development, Paris, France.
  • [7] Yu, C., Bi, E. (2019). Adsorption site-dependent transport of diclofenac in water saturated minerals and reference soils. Chemosphere, 236, 124256.
  • [8] Shirani, Z., Song, H., & Bhatnagar, A. (2020). Efficient removal of diclofenac and cephalexin from aqueous solution using Anthriscus sylvestris-derived activated biochar. Sci. Total. Environ., 745, 140789.
  • [9] Huijbers, P. M. C., Flach, C. F., & Larsson, D. G. J. (2019). A conceptual framework for the environmental surveillance of antibiotics and antibiotic resistance. Environ. Int., 130, 104880.
  • [10] Sun, H., Shi, X., Mao, J., & Zhu, D. (2010). Tetracycline sorption to coal and soil humic acids: an examination of humic structural heterogeneity. Environ. Toxicol. Chem., 29, 1934-1942.
  • [11] Li, Y., Su, P., Li, Y., Wen, K., Bi, G., & Cox, M. (2018). Adsorption-desorption and degradation of insecticides clothianidin and thiamethoxam in agricultural soils. Chemosphere, 207, 708-714.
  • [12] Türk, H., Hanay, Ö. (2017). Nano boyutlu sıfır değerlikli demir ile sulu ortamlarda klortetrasiklin giderim mekanizmasının incelenmesi. Sakarya University Journal of Science, 21(5), 1000-1007.
  • [13] Oral, O., Kantar, C. (2019). Diclofenac removal by pyrite-Fenton process: Performance in batch and fixed-bed continuous flow systems. Sci. Total Environ., 664, 817-823.
  • [14] Vitiello, G., Iervolino, G., Imparato, C., Rea, I., Borbone, F., De Stefano, L., Aronne, A., & Vaiano, V. (2021). F-doped ZnO nano- and meso-crystals with enhanced photocatalytic activity in diclofenac degradation. Sci. Total Environ., 762, 143066.
  • [15] Doretto, K. M., Peruchi, L. M., & Rath, S. (2014). Sorption and desorption of sulfadimethoxine, sulfaquinoxaline and sulfamethazine antimicrobials in Brazilian soils. Sci. Total Environ., 476-477, 406-414.
  • [16] Álvarez-Esmorís, C., Conde-Cid, M., Ferreira-Coelho, G., Fernández-Sanjurjo, M. J., Núñez-Delgado, A., Álvarez-Rodríguez, E., & Arias-Estévez, M. (2020). Adsorption/desorption of sulfamethoxypyridazine and enrofloxacin in agricultural soils. Sci. Total Environ., 706, 136015.
  • [17] Skrásková, K., Santos, L. H. M. L. M., Satínsky, D., Pena, A., Conceiçao, M., Montenegro, B. S. M., Solich, P., & Nováková, L. (2013). Fast and sensitive UHPLC methods with fluorescence and tandem mass spectrometry detection for the determination of tetracycline antibiotics in surface waters. J. Chromatogr. B., 927, 201-208. [18] https://go.drugbank.com/drugs/DB00586. Accessed 29 March 2022.
  • [19] Silah, H., Gül, Ü. D. (2018). Adsorption of everzol black by using Amberlyst A21: isotherm and kinetic studies. Sakarya University Journal of Science, 22(3), 1063-1070.
  • [20] Zhang, Q., Deng, S., Yu, G., & Huang, J. (2011). Removal of perfluorooctane sulfonate from aqueous solution by crosslinked chitosan beads: Sorption kinetics and uptake mechanism. Bioresour. Technol., 102, 2265-2271.
  • [21] Torrent, L., Marguí, E., Queralt, I., Hidalgo M., & Iglesias M. (2019). Interaction of silver nanoparticles with mediterranean agricultural soils: Lab-controlled adsorption and desorption studies. J. Environ. Sci., 83, 205-216.
  • [22] Li, F., Fang, X., Zhou, Z., Liao, X., Zou, J., Yuan, B., & Sun, W. (2019). Adsorption of perfluorinated acids onto soils: kinetics, isotherms, and influences of soil properties. Sci. Total Environ., 649, 504-514.
  • [23] Muendo, B.M., Shikuku, V.O., Getenga, Z.M., Lalah, J.O., Wandiga, S.O., & Rothballer, M. (2021). Adsorption-desorption and leaching behavior of diuron on selected Kenyan agricultural soils. Heliyon, 7, e06073.
  • [24] Giles, C.H., Smith, D., & Huitson, A. (1974). A general treatment and classification of the solute adsorption isotherm I. Theoretical. J. Colloid Interface Sci., 47, 755-765.
  • [25] Calvet, R. (1989). Adsorption of organic chemicals in soils. Environ Health Perspect., 83, 145-177.
  • [26] Weber, J.B., Shea, P.H., & Weed, S.B. (1986) Fluridone retention and release in soils. Soil Sci. Soc. Am. J., 50, 582-588.
  • [27] An, B., Xu, X., Ma, W., Huo, M., Wang, H., Liu, Z., Cheng, G., & Huang, L. (2021). The adsorption-desorption characteristics and degradation kinetics of ceftiofur in different agricultural soils. Ecotoxicol. Environ. Saf., 222, 112503.
  • [28] Zhou W., Zhang, Y., Li, W., Jia, H., Huang, H., & Li, B. (2019). Adsorption isotherms, degradation kinetics, and leaching behaviors of cyanogen and hydrogen cyanide in eight texturally different agricultural soils from China. Ecotoxicol. Environ. Saf., 185, 109704.
  • [29] Conde-Cid, M., Ferreira-Coelho, G., Núñez-Delgado, A., Fernández-Calviño, D., Arias-Estévez, M., Álvarez-Rodríguez, E., & Fernández-Sanjurjo, M.J. (2019). Competitive adsorption of tetracycline, oxytetracycline and chlortetracycline on soils with different pH value and organic matter content. Environmental Research, 178, 108669.
  • [30] Khataee, A.R., Vafaei, F., & Jannatkhah, M. (2013). Biosorption of three textile dyes from contaminated water by filamentous green algal Spirogyra sp.: kinetic, isotherm and thermodynamic studies. Int Biodeterior Biodegradation, 83, 33-40.
  • [31] Teixido, M., Granados, M., Prat, M.D., & Beltran, J.L. (2012). Sorption of tetracyclines onto natural soils: data analysis and prediction. Environ. Sci. Pollut. Res., 19, 3087-3095.
  • [32] Figueroa, R.A., Leonard, A., & Mackay, A.A. (2004). Modeling tetracycline antibiotic sorption to clays. Environ. Sci. Technol., 38, 476-483.
  • [33] Pils, J.R., Laird, D.A. (2007). Sorption of tetracycline and chlortetracycline on K- and Ca saturated soil clays, humic substances, and clay-humic complexes. Environ Sci. Technol., 41, 1928-1933.
  • [34] Conkle, J.L., Lattao, C., White, J.R., & Cook, R.L. (2010). Competitive sorption and desorption behavior for three fluoroquinolone antibiotics in a wastewater treatment wetland soil. Chemosphere, 80, 1353-1359.
  • [35] Zhang, J.O., Dong, Y.H. (2008). Effect of low-molecular-weight organic acids on the adsorption of norfloxacin in typical variable charge soils of China. J. Hazard. Mater., 151, 833-839.
  • [36] Lee, L.S., Carmosini, N., Sassman, S.A.,. Dion, H.M., & Sepulveda, M.S. (2007). Agricultural contributions of antimicrobials and hormones on soil and water quality. Adv. Agron., 93, 1-68.
  • [37] Martinez-Hernandez, V., Meffe, R., Herrera, S., Arranz, E. & de Bustamante, I. (2014). Sorption/desorption tical and personal care products from reclaimed water onto/from a natural sediment. Sci. Total Environ., 472, 273-281.
  • [38] Scheytt, T., Mersmann, P., Lındstadt, R., & Heberer, T. (2005). 1-octanol/water partition coefficients of 5 pharmaceuticals from human medical care: carbamazepine, clofibric acid, diclofenac, ibuprofen, and propyphenazone. Water Air and Soil Pollution, 165(1):3-11.
  • [39] Oleszczuk, P., Xin, B. (2011). Influence of anionic, cationic and nonionic surfactants on adsorption and desorption of oxytetracycline by ultrasonically treated and non-treated multiwalled carbon nanotubes. Chemosphere, 8, 1312-1317.
There are 38 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Articles
Authors

Ülker Aslı Güler 0000-0002-9608-9745

Eliza Tuncel This is me 0000-0002-2427-4482

Project Number M-581
Publication Date December 30, 2022
Submission Date July 7, 2022
Published in Issue Year 2022

Cite

APA Güler, Ü. A., & Tuncel, E. (2022). Experimental Data and Modeling for the Adsorption/Desorption of Tetracycline and Diclofenac on the Agricultural Soils. International Journal of Innovative Engineering Applications, 6(2), 286-292. https://doi.org/10.46460/ijiea.1141731
AMA Güler ÜA, Tuncel E. Experimental Data and Modeling for the Adsorption/Desorption of Tetracycline and Diclofenac on the Agricultural Soils. ijiea, IJIEA. December 2022;6(2):286-292. doi:10.46460/ijiea.1141731
Chicago Güler, Ülker Aslı, and Eliza Tuncel. “Experimental Data and Modeling for the Adsorption/Desorption of Tetracycline and Diclofenac on the Agricultural Soils”. International Journal of Innovative Engineering Applications 6, no. 2 (December 2022): 286-92. https://doi.org/10.46460/ijiea.1141731.
EndNote Güler ÜA, Tuncel E (December 1, 2022) Experimental Data and Modeling for the Adsorption/Desorption of Tetracycline and Diclofenac on the Agricultural Soils. International Journal of Innovative Engineering Applications 6 2 286–292.
IEEE Ü. A. Güler and E. Tuncel, “Experimental Data and Modeling for the Adsorption/Desorption of Tetracycline and Diclofenac on the Agricultural Soils”, ijiea, IJIEA, vol. 6, no. 2, pp. 286–292, 2022, doi: 10.46460/ijiea.1141731.
ISNAD Güler, Ülker Aslı - Tuncel, Eliza. “Experimental Data and Modeling for the Adsorption/Desorption of Tetracycline and Diclofenac on the Agricultural Soils”. International Journal of Innovative Engineering Applications 6/2 (December 2022), 286-292. https://doi.org/10.46460/ijiea.1141731.
JAMA Güler ÜA, Tuncel E. Experimental Data and Modeling for the Adsorption/Desorption of Tetracycline and Diclofenac on the Agricultural Soils. ijiea, IJIEA. 2022;6:286–292.
MLA Güler, Ülker Aslı and Eliza Tuncel. “Experimental Data and Modeling for the Adsorption/Desorption of Tetracycline and Diclofenac on the Agricultural Soils”. International Journal of Innovative Engineering Applications, vol. 6, no. 2, 2022, pp. 286-92, doi:10.46460/ijiea.1141731.
Vancouver Güler ÜA, Tuncel E. Experimental Data and Modeling for the Adsorption/Desorption of Tetracycline and Diclofenac on the Agricultural Soils. ijiea, IJIEA. 2022;6(2):286-92.