Research Article
BibTex RIS Cite

Corner Reflector (CR) Installation and Controlling of Permanent Scatterer (PS) in Mine Sites

Year 2022, , 297 - 302, 30.12.2022
https://doi.org/10.46460/ijiea.1165351

Abstract

Deformations in mining areas have been started to be monitored by satellite SAR-based methods, which have recently emerged as an alternative to classical methods (GNSS receivers, Geometric Leveling, Terrestrial Lidar, UAV Photogrammetry, etc.). The most important advantage of this method is that quite wide areas can be monitored remotely. However, the mentioned way also has some disadvantages. The first of these; deformations can only be determined in the direction of the Satellite Line Of Sight (LOS), and the second one is that there is no correlated reflective surface due to the continuous change of topography in the locations where mining activities are carried out. Within the framework of this study, it is aimed to monitor PS by placing corner reflectors (CR) in the locations where sufficient Permanent Scatterer (PS) cannot be produced in Kalburçayırı and Hamal Coal Fields of Kangal Thermal Reactor Elektric production A.Ş. By considering the area through Sentinel-1A/B satellites, new PSs constituted by employing the CR facility has been successfully observed in locations, where PS could not be produced before. The results show us that; placing corner reflectors in locations where sufficient PS cannot be made or not determined at all, increases the number and quality of PS positively.

References

  • Poyraz, F., GÜL, Y., & Duymaz, B. (2020). Determination of deformations by using the PSI technique at a common dump site of three different open-pit marble mines in Turkey. Turkish Journal of Earth Sciences, 29(6).
  • Ferretti, A., Prati, C., Rocca, F. (2001). Permanent Scatterers in SAR interferometry. IEEE Trans Geosci Remote Sens 39(1):8–20. doi: 10.1109/36.898661
  • Colesanti, C., Ferretti, A., Novali, F., Prati, C., Rocca, F. (2003a). SAR monitoring of progressive and seasonal ground deformation using the permanent scatterers technique. IEEE Transactions on Geoscience and Remote Sensing 41 (7): 1685-1701. doi: 10.1109/TGRS.2003.813278
  • Colesanti, C., Ferretti, A., Prati, C., Rocca, F. (2003b). Monitoring landslides and tectonic motions with the Permanent Scatterers Technique. Engineering Geology 68 (1-2): 3-14. doi: 10.1016/ S0013-7952(02)00195-3
  • Canuti, P., Casagli, N., Ermini, L., Fanti, R., Farina, P. (2004). Landslide activity as a geoindicator in Italy: significance and new perspectives from remote sensing. Environmental Geology 45 (7): 907-919. doi: 10.1007/s00254-003-0952-5
  • Colesanti, C., Wasowski, J. (2004). Satellite SAR interferometry for wide-area slope hazard detection and site-specific monitoring of slow landslides. In: Proceedings of the Ninth International Symposium on Landslides; Rio de Janeiro, Brazil. (pp. 795-802).
  • Ferretti, A., Prati, C., Rocca, F., Casagli, N., Farina, P. et al. (2005). Permanent Scatterers technology: a powerful state of the art tool for historic and future monitoring of landslides and other terrain instability phenomena. In: International Conference on Landslide Risk Management; Vancouver, Canada. (pp. 1-9).
  • Gündoğdu, B., Erdoğan, H., & Oktar, O. (2021). Investigation of Disasters with Different InSAR Methods. Turkish Journal of Geosciences, 2(1), 33-45.
  • Hooper, A., Segall, P., Zebker, H. (2007). Persistent scatterer interferometric synthetic aperture radar for crustal deformation analysis, with application to Volca´n Alcedo, Gala´pagos. Journal of Geophysical Research 112: B07407. doi: 10.1029/2006JB004763
  • Poyraz, F., & Hastaoğlu, K. Ö. (2020). Monitoring of tectonic movements of the Gediz Graben by the PSInSAR method and validation with GNSS results. Arabian Journal of Geosciences, 13(17), 1-11. doi:10.1007/s12517-020-05834-5
  • Ferretti, A. (2014). Satellite InSAR data: reservoir monitoring from space. EAGE publications. ISBN 978-90-73834-71-2, 178s,Netherlands
  • Froese, C., Poncos, V., Skirrow, R., Mansour, M., & Martin, D. (2008, May). Characterizing complex deep seated landslide deformation using corner reflector insar (CR-INSAR): Little Smoky Landslide, Alberta. In Proc. 4th Can. Conf. Geohazards. (pp. 1-4).
  • Qin, Y., Perissin, D., & Lei, L. (2013). The design and experiments on corner reflectors for urban ground deformation monitoring in Hong Kong. International Journal of Antennas and Propagation, 2013. https://doi.org/10.1155/2013/191685
  • Garthwaite, M. C., Lawrie, S., Dawson, J., & Thankappan, M. (2015). Corner reflectors as the tie between insar and GNSS measurements: Case study of resource extraction in Australia. Eur. Sp. Agency. Spec. Publ., ESA SP SP-731.
  • Garthwaite, M. C. (2017). On the design of radar corner reflectors for deformation monitoring in multi-frequency insar. Remote Sensing, 9(7), 648. doi.org/10.3390/rs9070648
  • Parker, A. L., Featherstone, W. E., Penna, N. T., Filmer, M. S., & Garthwaite, M. C. (2017). Practical considerations before installing ground-based geodetic infrastructure for integrated insar and cgnss monitoring of vertical land motion. Sensors, 17(8), 1753. doi.org/10.3390/s17081753
  • Bányai, L., Nagy, L., Hooper, A., Bozsó, I., Szűcs, E., & Wesztergom, V. (2019). Investigation of integrated twin corner reflectors designed for 3-D InSAR applications. IEEE Geoscience and Remote Sensing Letters, 17(6), 1013-1016. doi:10.1109/LGRS.2019.2939675
  • Jauvin, M., Yan, Y., Trouvé, E., Fruneau, B., Gay, M., & Girard, B. (2019). Integration of Corner Reflectors for the Monitoring of Mountain Glacier Areas with Sentinel-1 Time Series. Remote Sensing, 11(8), 988. https://doi.org/10.3390/rs11080988
  • Boukhemacha, M. A., Teleaga, D., Serbulea, M. S., Poncos, V., Serpescu, I., Manoli, D. M., ... & Haagmans, R. (2021). Combined in-situ and Persistent Scatterers Interferometry Synthetic Aperture Radar (PSInSAR) monitoring of land surface deformation in urban environments-case study: tunnelling works in Bucharest (Romania). International Journal of Remote Sensing, 42(7), 2641-2662. doi.org/10.1080/01431161.2020.1857876
  • Liu, Z., Bian, Z., & Liu, W. (2022). Monitoring of large and inconsistent deformation in coal mining area using point-like target offset tracking. International Journal of Remote Sensing, 43(4), 1157-1177. doi: 10.1080/01431161.2021.2023230
  • URL-1<https://site.tre-altamira.com/insar-solutions/%20insar-corner-reflectors/>, alındığı tarih: 10.06.2022
  • Wessel, P., & Smith, W. H. (1995). New version of the generic mapping tools. Eos, Transactions American Geophysical Union, 76(33), 329-329.
  • Wessel, P., & Smith, W. H. (1998). New, improved version of Generic Mapping Tools released. Eos, Transactions American Geophysical Union, 79(47), 579-579.
  • Gül,Y.,(2006), Bazı Açık İşletmelerdeki Değişik Kaya Birimlerinin Taşıma Kapasitelerinin Araştırılması ve Kayaç Özellikleri ile İlişkilendirilmesi. Sivas Cumhuriyet Üniversitesi Fen Bilimleri Enstitüsü ( Doktora Tezi),227s, Sivas
  • Gül, Y., Hastaoğlu, K.Ö., Poyraz, F., (2020). Maden sahalarında deformasyonların yapay açıklıklı uzay radar verilerinden yansıtıcı yüzey kullanılarak 2 boyutlu izlenmesi ve ‘MineSAR’ yazılımının geliştirilmesi. Geomine Arge Mühendislik Danışmanlık Yazılım İhr. İth. Tic. Ltd. Şti. (Devam ediyor)
  • URL-3<https://www.heavens-above.com/SatInfo .aspx?satid=39634&lat=39.0935&lng=37.2906&loc=Hamal&alt=0&tz=TRT, alındığı tarih:06.06.2022
  • Braun, A. (2020). Sentinel-1 Toolbox, Synergetic use of radar and optical data, Combination of Sentinel-1 and Sentinel-2 and application of analysis tools, ESA, SkyWatch Space Applications Inc.,(pp.29)
  • Miranda, N., Meadows, P. J., Type, D., & Note, T. (2015). Radiometric calibration of S-1 level-1 products generated by the S-1 IPF. Viewed at https://sentinel. esa. int/documents/247904/685163/S1-Radiometric-Calibration-V1. 0. pdf.
  • Kumar, D. (2021). Urban objects detection from C-band synthetic aperture radar (SAR) satellite images through simulating filter properties. Scientific Reports, 11(1), 1-24.

Maden Sahalarında Köşe Reflektör (CR) Tesisi ve Sabit Saçıcı (PS) Kontrolü

Year 2022, , 297 - 302, 30.12.2022
https://doi.org/10.46460/ijiea.1165351

Abstract

Maden sahalarındaki deformasyonlar son zamanlarda, klasik yöntemlerin (GNSS alıcıları, Geometrik Nivelman, Yersel Lidar ve İHA Fotogrametresi vb.) alternatifi olarak ortaya çıkmaya başlayan uydu SAR tabanlı yöntemler ile izlenmeye başlanmıştır. Bu yöntemin en önemli avantajı, oldukça geniş alanların, alansal olarak uzaktan izlenebiliyor olmasıdır. Buna rağmen yöntem, bazı dezavantajlar da içermektedir. Bunlardan ilki; deformasyonların sadece uydu bakış doğrultusu yönünde (LOS) belirlenebiliyor olması, ikincisi ise maden kazı faaliyetlerinin bulunduğu lokasyonlarda topoğrafyanın sürekli değişimine bağlı olarak eşlenik yansıtıcı yüzey bulunamamasıdır. Bu çalışma kapsamında, Kangal Termik Santral Elektrik Üretim A.Ş.’nin Kalburçayırı ve Hamal Kömür sahalarında sabit saçıcı (PS) olmayan lokasyonlara, köşe reflektörler (CR) yerleştirilerek PS takibi amaçlanmıştır. Sentinel-1A/B uyduları vasıtası ile saha takip edilerek daha önce PS üretilemeyen lokasyonlarda CR tesisi ile oluşan yeni PS’ler başarı ile gözlemlenmiştir. Sonuçlar bize göstermiştir ki; yeterince PS üretilemeyen veya hiç görülmeyen lokasyonlara köşe reflektör yerleştirilmesi, PS sayısını ve kalitesini olumlu yönde artırmaktadır.

References

  • Poyraz, F., GÜL, Y., & Duymaz, B. (2020). Determination of deformations by using the PSI technique at a common dump site of three different open-pit marble mines in Turkey. Turkish Journal of Earth Sciences, 29(6).
  • Ferretti, A., Prati, C., Rocca, F. (2001). Permanent Scatterers in SAR interferometry. IEEE Trans Geosci Remote Sens 39(1):8–20. doi: 10.1109/36.898661
  • Colesanti, C., Ferretti, A., Novali, F., Prati, C., Rocca, F. (2003a). SAR monitoring of progressive and seasonal ground deformation using the permanent scatterers technique. IEEE Transactions on Geoscience and Remote Sensing 41 (7): 1685-1701. doi: 10.1109/TGRS.2003.813278
  • Colesanti, C., Ferretti, A., Prati, C., Rocca, F. (2003b). Monitoring landslides and tectonic motions with the Permanent Scatterers Technique. Engineering Geology 68 (1-2): 3-14. doi: 10.1016/ S0013-7952(02)00195-3
  • Canuti, P., Casagli, N., Ermini, L., Fanti, R., Farina, P. (2004). Landslide activity as a geoindicator in Italy: significance and new perspectives from remote sensing. Environmental Geology 45 (7): 907-919. doi: 10.1007/s00254-003-0952-5
  • Colesanti, C., Wasowski, J. (2004). Satellite SAR interferometry for wide-area slope hazard detection and site-specific monitoring of slow landslides. In: Proceedings of the Ninth International Symposium on Landslides; Rio de Janeiro, Brazil. (pp. 795-802).
  • Ferretti, A., Prati, C., Rocca, F., Casagli, N., Farina, P. et al. (2005). Permanent Scatterers technology: a powerful state of the art tool for historic and future monitoring of landslides and other terrain instability phenomena. In: International Conference on Landslide Risk Management; Vancouver, Canada. (pp. 1-9).
  • Gündoğdu, B., Erdoğan, H., & Oktar, O. (2021). Investigation of Disasters with Different InSAR Methods. Turkish Journal of Geosciences, 2(1), 33-45.
  • Hooper, A., Segall, P., Zebker, H. (2007). Persistent scatterer interferometric synthetic aperture radar for crustal deformation analysis, with application to Volca´n Alcedo, Gala´pagos. Journal of Geophysical Research 112: B07407. doi: 10.1029/2006JB004763
  • Poyraz, F., & Hastaoğlu, K. Ö. (2020). Monitoring of tectonic movements of the Gediz Graben by the PSInSAR method and validation with GNSS results. Arabian Journal of Geosciences, 13(17), 1-11. doi:10.1007/s12517-020-05834-5
  • Ferretti, A. (2014). Satellite InSAR data: reservoir monitoring from space. EAGE publications. ISBN 978-90-73834-71-2, 178s,Netherlands
  • Froese, C., Poncos, V., Skirrow, R., Mansour, M., & Martin, D. (2008, May). Characterizing complex deep seated landslide deformation using corner reflector insar (CR-INSAR): Little Smoky Landslide, Alberta. In Proc. 4th Can. Conf. Geohazards. (pp. 1-4).
  • Qin, Y., Perissin, D., & Lei, L. (2013). The design and experiments on corner reflectors for urban ground deformation monitoring in Hong Kong. International Journal of Antennas and Propagation, 2013. https://doi.org/10.1155/2013/191685
  • Garthwaite, M. C., Lawrie, S., Dawson, J., & Thankappan, M. (2015). Corner reflectors as the tie between insar and GNSS measurements: Case study of resource extraction in Australia. Eur. Sp. Agency. Spec. Publ., ESA SP SP-731.
  • Garthwaite, M. C. (2017). On the design of radar corner reflectors for deformation monitoring in multi-frequency insar. Remote Sensing, 9(7), 648. doi.org/10.3390/rs9070648
  • Parker, A. L., Featherstone, W. E., Penna, N. T., Filmer, M. S., & Garthwaite, M. C. (2017). Practical considerations before installing ground-based geodetic infrastructure for integrated insar and cgnss monitoring of vertical land motion. Sensors, 17(8), 1753. doi.org/10.3390/s17081753
  • Bányai, L., Nagy, L., Hooper, A., Bozsó, I., Szűcs, E., & Wesztergom, V. (2019). Investigation of integrated twin corner reflectors designed for 3-D InSAR applications. IEEE Geoscience and Remote Sensing Letters, 17(6), 1013-1016. doi:10.1109/LGRS.2019.2939675
  • Jauvin, M., Yan, Y., Trouvé, E., Fruneau, B., Gay, M., & Girard, B. (2019). Integration of Corner Reflectors for the Monitoring of Mountain Glacier Areas with Sentinel-1 Time Series. Remote Sensing, 11(8), 988. https://doi.org/10.3390/rs11080988
  • Boukhemacha, M. A., Teleaga, D., Serbulea, M. S., Poncos, V., Serpescu, I., Manoli, D. M., ... & Haagmans, R. (2021). Combined in-situ and Persistent Scatterers Interferometry Synthetic Aperture Radar (PSInSAR) monitoring of land surface deformation in urban environments-case study: tunnelling works in Bucharest (Romania). International Journal of Remote Sensing, 42(7), 2641-2662. doi.org/10.1080/01431161.2020.1857876
  • Liu, Z., Bian, Z., & Liu, W. (2022). Monitoring of large and inconsistent deformation in coal mining area using point-like target offset tracking. International Journal of Remote Sensing, 43(4), 1157-1177. doi: 10.1080/01431161.2021.2023230
  • URL-1<https://site.tre-altamira.com/insar-solutions/%20insar-corner-reflectors/>, alındığı tarih: 10.06.2022
  • Wessel, P., & Smith, W. H. (1995). New version of the generic mapping tools. Eos, Transactions American Geophysical Union, 76(33), 329-329.
  • Wessel, P., & Smith, W. H. (1998). New, improved version of Generic Mapping Tools released. Eos, Transactions American Geophysical Union, 79(47), 579-579.
  • Gül,Y.,(2006), Bazı Açık İşletmelerdeki Değişik Kaya Birimlerinin Taşıma Kapasitelerinin Araştırılması ve Kayaç Özellikleri ile İlişkilendirilmesi. Sivas Cumhuriyet Üniversitesi Fen Bilimleri Enstitüsü ( Doktora Tezi),227s, Sivas
  • Gül, Y., Hastaoğlu, K.Ö., Poyraz, F., (2020). Maden sahalarında deformasyonların yapay açıklıklı uzay radar verilerinden yansıtıcı yüzey kullanılarak 2 boyutlu izlenmesi ve ‘MineSAR’ yazılımının geliştirilmesi. Geomine Arge Mühendislik Danışmanlık Yazılım İhr. İth. Tic. Ltd. Şti. (Devam ediyor)
  • URL-3<https://www.heavens-above.com/SatInfo .aspx?satid=39634&lat=39.0935&lng=37.2906&loc=Hamal&alt=0&tz=TRT, alındığı tarih:06.06.2022
  • Braun, A. (2020). Sentinel-1 Toolbox, Synergetic use of radar and optical data, Combination of Sentinel-1 and Sentinel-2 and application of analysis tools, ESA, SkyWatch Space Applications Inc.,(pp.29)
  • Miranda, N., Meadows, P. J., Type, D., & Note, T. (2015). Radiometric calibration of S-1 level-1 products generated by the S-1 IPF. Viewed at https://sentinel. esa. int/documents/247904/685163/S1-Radiometric-Calibration-V1. 0. pdf.
  • Kumar, D. (2021). Urban objects detection from C-band synthetic aperture radar (SAR) satellite images through simulating filter properties. Scientific Reports, 11(1), 1-24.
There are 29 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Articles
Authors

Bekir Poyraz 0000-0003-2832-4632

Yavuz Gül 0000-0002-2969-577X

Publication Date December 30, 2022
Submission Date August 22, 2022
Published in Issue Year 2022

Cite

APA Poyraz, B., & Gül, Y. (2022). Corner Reflector (CR) Installation and Controlling of Permanent Scatterer (PS) in Mine Sites. International Journal of Innovative Engineering Applications, 6(2), 297-302. https://doi.org/10.46460/ijiea.1165351
AMA Poyraz B, Gül Y. Corner Reflector (CR) Installation and Controlling of Permanent Scatterer (PS) in Mine Sites. ijiea, IJIEA. December 2022;6(2):297-302. doi:10.46460/ijiea.1165351
Chicago Poyraz, Bekir, and Yavuz Gül. “Corner Reflector (CR) Installation and Controlling of Permanent Scatterer (PS) in Mine Sites”. International Journal of Innovative Engineering Applications 6, no. 2 (December 2022): 297-302. https://doi.org/10.46460/ijiea.1165351.
EndNote Poyraz B, Gül Y (December 1, 2022) Corner Reflector (CR) Installation and Controlling of Permanent Scatterer (PS) in Mine Sites. International Journal of Innovative Engineering Applications 6 2 297–302.
IEEE B. Poyraz and Y. Gül, “Corner Reflector (CR) Installation and Controlling of Permanent Scatterer (PS) in Mine Sites”, ijiea, IJIEA, vol. 6, no. 2, pp. 297–302, 2022, doi: 10.46460/ijiea.1165351.
ISNAD Poyraz, Bekir - Gül, Yavuz. “Corner Reflector (CR) Installation and Controlling of Permanent Scatterer (PS) in Mine Sites”. International Journal of Innovative Engineering Applications 6/2 (December 2022), 297-302. https://doi.org/10.46460/ijiea.1165351.
JAMA Poyraz B, Gül Y. Corner Reflector (CR) Installation and Controlling of Permanent Scatterer (PS) in Mine Sites. ijiea, IJIEA. 2022;6:297–302.
MLA Poyraz, Bekir and Yavuz Gül. “Corner Reflector (CR) Installation and Controlling of Permanent Scatterer (PS) in Mine Sites”. International Journal of Innovative Engineering Applications, vol. 6, no. 2, 2022, pp. 297-02, doi:10.46460/ijiea.1165351.
Vancouver Poyraz B, Gül Y. Corner Reflector (CR) Installation and Controlling of Permanent Scatterer (PS) in Mine Sites. ijiea, IJIEA. 2022;6(2):297-302.