Research Article
BibTex RIS Cite

The Effect of Die Geometry on Cup Damages in Cold Deep Drawing of Rectangular Cups

Year 2022, , 340 - 350, 30.12.2022
https://doi.org/10.46460/ijiea.1169005

Abstract

Deep drawing is the flow of sheet into the die cavity by applying punch force. In deep drawing, cups have been produced by pushing the sheet from the center part into the die cavity by punches to bring the sheet into the desired cup between flat thin layers. Higher drawing ratios cannot be obtained in deep drawing cups due to neck formation or cracking in the corner radii of the cup. For this, it is important to determine the appropriate parameters correctly for the deep drawing to be successful. In this article, the effects of die geometry on cup wall thickness and its damages were determined by giving angles to the upper surface of the die and the lower surface of the blank holder in deep drawing of rectangular cups. Thus, angles of 0°, 3°, 6°, and 9° were given to the die upper surface/blank holder lower surface. The study was carried out at a constant 1800 daN blank holder force and a constant 4 mm/s punch speed. In the deep drawing, the gap between the die/punch was 1.2 mm, and the bottom of punch and edge radii and the die throat radii were used fixed at 6 mm. St37 steel with a thickness of 1 mm was used in this study. The wall thicknesses were measured using a Mitutoyo LH-600E precision linear measuring device with a precision of 0.001 point contact. It was determined that the wall thickness of the cups increased as the cup heights increased, the maximum wall thickness occurred at the corners of the lower parts of the cups and was 0.373 mm. The region most affected by plastic deformation is the lower part of the cup. Maximum compressive and tensile forces occur in this region due to deformation hardening and therefore maximum stress and hardness have occurred in this region. The maximum hardness was measured in the region of the bottom of the cup and as 61.4 HRC. The minimum hardness was measured in the top region of cup. It was observed that the hardness decreased further towards the upper rim of the cup and was 43.8 HRC. The average hardness value was determined as 53.1 HRC. As a result, it has been determined that the die geometry has a significant effect on cup wall thickness changes and cup damages by giving angles to the upper surface of the die and the lower surface of the blank holder in cold deep drawing of rectangular cups.

References

  • [1] R. Coles, M.J. Kirwan, (2011). Food and beverage packaging technology, 2nd Edition, Wiley-Blackwell, Publishing London UK.
  • [2] M. Colgan, J. Monaghan, (2002). Deep drawing process: Analysis and experiment, Journal of Materials Processing Technology, vol 132(1-3), 35-41.
  • [3] M. Hassan, L. Hezam, M. El-Sebaie, J. Purbolaksono, (2014). Deep drawing characteristics of square cups through conical dies, Procedia Engineering, vol. 81, 873-880.
  • [4] M.A. Hassan, I.M. Hassab-Allah, L.M.A. Hezam, N.A. Mardi, M. Hamdi, (2015). Deep drawing of asymmetric cups through a conical die without blank holder, Proceedings of the World Congress on Engineering 2015, London, U.K., July 1-3.
  • [5] A.A. Dhaiban, M.E.S. Soliman, M.G. El-Sebaie, (2013). Development of deep drawing without blank-holder for producing elliptic brass cups through conical dies, Journal of Engineering Sciences (JES), 41, (4), 1530-1548.
  • [6]H. Zein, M. El Sherbiny, M. Abd-Rabou, M.El Shazly, (2014). Thinning and spring back prediction of sheet metal in the deep drawing process, Materials and Design, 53, 797-808.
  • [7] R.R. Goud, K.E. Prasad, S.K. Singh, (2014). Formability limit diagrams of extra-deep-drawing steel at elevated temperatures, Procedia Materials Science, 6, 123-128.
  • [8] B.V.S. Rao, G.C.M. Reddy, G.K.M. Rao, P.V.R. Reddy, (2016). Influence of drawing ratio on thickness variation along the walls of deep-drawn cups, Journal of Manufacturing Engineering, 11(2), 86–93.
  • [9] R. Karl, (2008). Simulation of sheet metal forming-necessary developments in the future, LS-DYNA Awenderforum. Vol. 7, A(1), 59-68.
  • [10] A.S. Takalkar, L.B.M. Chinnapandi, (2019). Deep drawing process at the elevated temperature: A critical review and future research directions, CIRP Journal of Manufacturing Science and Technology, 27, 56-67,
  • [11] H. Zein, M. El-Sherbiny, M. Abd-Rabou, M. El Shazly, (2013). Effect of die design parameters on thinning of sheet metal in the deep drawing process, American Journal of Mechanical Engineering, 1(2), 20-29,
  • [12] A. C. S. Reddy, S. Rajesham, P. R. Reddy, T. P. Kumar, J. Goverdhan, (2015). An experimental study on the effect of process parameters in the deep draw using Taguchi technique, International Journal of Engineering Science and Technology, 7(1), 21-32.
  • [13] K. Mac, E.T. George, M.K. Scot, (2003). Handbook of Aluminum, Physical Metallurgy and Processes, Marcel Dekker Inc. vol. 1, New York USA.
  • [14] Z. Kailun, J.P. Denis, W. Liliang, L. Jianguo, (2018). A review on forming techniques for manufacturing lightweight complex-shaped aluminum panel components, International Journal of Lightweight Materials and Manufacture, vol. 1, 55-80.
  • [15] B. Vukota, (2004). Sheet Metal Formıng Processes And Die Design, Industrial Press Inc, New York USA.
  • [16] D. Cyril, H. George, L. Cain, V.C. Gold, (2012). Joyjeet Ghose. Tool Design, Special Indian Edition.
  • [17] B. Kenza, F.G. Mohammad, E.E. Hachmi, F. Musthapha, M. Mohamad, M. Mada, (2018). Modeling of anisotropy influence on thickness distribution of deep drawing sheet, International Conference on Robotics, Control and Automation Engineering, RCAE, Beijing, 26-28 December.
  • [18] S. Kilani, (2010). Sheet Metal Forming Processes, Constitutive Modelling and Numerical Simulation, Editor: Banabic D., Numerical Simulation of the Sheet Metal Forming Processes, Springer Science &Business Media. 213-295,
  • [19] P. Das, S.K. Panda, D.K. Pratihar, (2013). Modification of initial blank shape to minimize earing in the deep drawing process”. Advanced Materials Manufacturing&Characterization, vol. 3(1), 99-104.
  • [20] S. Pawan Nagda, S.B. Purnank, M.K. Shah, (2017). Finite element simulation of the deep drawing process to minimize earing, World Academy of Science, Engineering and Technology International Journal of Mechanical and Mechatronics Engineering, vol. 11(2), 413-416.
  • [21] K. Bouchaala, M.F. Ghanameh, M. Faqir, M. Mada, E. Esaadiqi, (2021). Numerical investigation of the effect of punch corner radius and die shoulder radius on the flange earrings for AA1050 and AA1100 aluminum alloys in the cylindrical deep drawing process, Heliyon vol. 7(4), e06662.
  • [22] D. Banabic, (2010). Sheet metal forming processes: Constitutive modeling and numerical simulation, Berlin Heidelberg Derdrecht, London New York, Springer.
  • [23] D.C. Chen, L. Cheng-Yu, YY. Lai, (2019). Finite element analysis of deep drawing, Advances in Intelligent Mechatronic Systems and Precision Engineering, 11(9), 1-10.
  • [24] S.M. Hussaini, G. Krishna, A.K. Gupta, S.K. Singh, (2015). Development of experimental and theoretical forming limit diagrams for warm forming of austenitic stainless steel 316, Journal of Manufacturing Processes, 18, 151–158.
  • [25] K. Zheng, D.J. Politis, L. Wang, J. Lin, (2018). A review on forming techniques for manufacturing lightweight complex-shaped aluminum panel components, International Journal of Lightweight Materials and Manufacture, 1(2), 55-80.
  • [26] A. Shaaban, A.S. Elakkad, (2021). Numerical and experimental analysis of single-acting stroke deep drawing of symmetric low-depth products without blank holder. Ain Shams Engineering Journal, vol. 12(3), 2907-2919.
  • [27] Choudhari, C.S., Khasbage, S.S. (2020). Experimental investigation of forming parameters for square cup deep drawing process, Materials Today: Proceedings, Elsevier Ltd. 44, 4261–4267.
  • [28] Tenner, J., Andreas, K., Radius, A., & Merklein, M. (2017). Numerical and experimental investigation of dry deep drawing of aluminum alloys with conventional and coated tool surfaces. Procedia engineering, 207, 2245-2250.
  • [29] Rivas-Menchi, A., Medellín-Castillo, H.I., de Lange, D.F., García-Zugasti, P. de J. (2018). Performance evaluation of analytical expressions for cylindrical and rectangular deep drawing force estimation, Journal of Manufacturing Processes, Elsevier. 36, 340–350.
  • [30] Dwivedi, R., Agnihotri, G. (2017). Study of deep drawing process parameters. Materials Today: Proceedings, 4(2), 820-826.
  • [31] Aminzahed, I., Mosavi Mashadi, M., Sereshk, M.R.V. (2017). Investigation of holder pressure and size effects in micro deep drawing of rectangular work pieces driven by piezoelectric actuator, Materials Science and Engineering C, Elsevier B.V. 71, 685–689.
  • [32] Ünal, E., (2011). Kare Kesitli Kapların Derin Çekilmesinde Kalıp Geometrisi ve Radyüsünün Çekme Oranına Etkisinin Araştırılması, Doktora Tezi, Fırat Üniversitesi, Elazığ/Türkiye. [33] Çapan, L., (2010). Metallere Plastik Şekil Verme, 5. Baskı, İstanbul/Türkiye, Çağlayan Kitabevi.
  • [34] Güneş, A.T., (2002). Pres İşleri Tekniği-Cilt2, 2. Baskı, Ankara/Türkiye, TMMOB Makina Mühendisleri Odası.
  • [35] Demiray, K., (2006). Al 1050 Malzemesinin Derin Çekme İşleminde Baskı Plakasının Etkisinin Teorik Ve Deneysel Olarak İncelenmesi, “Yüksek Lisans Tezi”. Zonguldak Karaelmas Üniversitesi, Karabük/Türkiye.
  • [36] Seçkin, Ö., (2005). DKP Sac Çeliğinin Derin Çekilmesinde Matris Yüzey Açı Değişiminin Araştırılması, Yüksek Lisans Tezi, Fırat Üniversitesi, Elazığ/Türkiye.
  • [37] Uzun, İ., Erişkin, Y., (1997). Sac Metal Kalıpçılığı, Ankara/Türkiye, Milli EğitimBakanlığı Yayınları.
  • [38] Larsson, L., (2005). Warm Sheet Metal Forming with Localized In-Tool Induction Heating, 1. Eddition, Sweden, Lund University.
  • [39] Savaş, V., Seçgin, Ö., (2010). An experimental investigation of formig load and side-wall thickness obtained by a new deep drawing die, International Journal of Material Forming, 3, 209-213.
  • 40] Cotterell, M., Schambergerova, J., Ziegelheim, J., Janovec, J., (2002). Depedence of micro-hardness on deformation of deep-drawing steel sheets, Journal of Materials Processing Technology, 124(3), 293–296.
  • [41] Aarón, R.M., Hugo, I.M.C., Dirk, F.L., Pedro de, J.G.Z., (2018). Performance evaluation of analytical expressions for cylindrical and rectangular deep drawing force estimation, Journal of Manufacturing Processes, 12 (36), 340–350.
  • [42] Hattalli, V.L., Srivatsa, S.R., (2016). Sheet Metal Forming Processes-Recent Technological Advances. International Conference on Advanced Materials and Applications (ICAMA 2016), Bengaluru, Karanataka, INDIA, June 15-17.
  • [43] Özçelik, G., (2008). Derin Çekme İşleminin Simülasyonu, Yüksek Lisans Tezi, Sakarya Üniversitesi Fen Bilimleri Enstitüsü, Sakarya.
  • [44] Saha, S., Pal, S. and Albright, J. A., (1982). Surgical drilling: design and performance of an improved drill, J. Biomechanic Eng., 104, 245-252.

Dikdörtgen Geometriye Sahip Kapların Soğuk Derin Çekilmesinde Kalıp Geometrisinin Kap Hasarları Üzerindeki Etkisi

Year 2022, , 340 - 350, 30.12.2022
https://doi.org/10.46460/ijiea.1169005

Abstract

Derin çekme, zımba kuvveti uygulanarak sac malzemenin kalıp boşluğuna akışıdır. Derin çekmede, düz ince tabakalar arasında sacı istenen şekle getirmek için zımba kullanılarak sacı merkez kısmından kalıp boşluğuna iterek kaplar üretilmektedir. Derin çekilmiş kaplarda kabın köşe yarıçaplarında boyun oluşumu veya çatlamaların oluşması nedeniyle daha yüksek çekme oranları elde edilememektedir. Bunun için derin çekme işleminin başarılı olmasında uygun işlem parametrelerinin doğru seçilmesi önemlidir. Bu makalede, dikdörtgen geometriye sahip kapların derin çekilmesinde matris üst yüzeyine ve pot çemberinin alt yüzeyine açılar verilerek matris geometrisinin, kap kesit incelmeleri ve hasarları üzerinde olan etkileri tespit edilmiştir. Bunun için matris üst yüzeyine/pot çemberi alt yüzeyine 0°, 3°, 6° ve 9°’lik açılar verilmiştir. Pot çemberi kuvveti sabit 1800 daN ve stampa hızı da sabit 4 mm/s olarak uygulanmıştır. Derin çekme işlemlerinde, matris/stampa arası boşluk 1.2 mm, stampa uç ve kenar radyüsleri ile matris ağız yarıçapları 6 mm alınmıştır. Çalışmada kalınlığı 1 mm olan St37 çeliği kullanılmıştır. Cidar kalınlıkları Mitutoyo LH-600E hassas lineer ölçüm cihazında 0.001 hassasiyetinde nokta temaslı olarak ölçülmüştür. Kap yükseklikleri artıkça kaplardaki cidar incelmelerinin arttığı, maksimum incelmenin kabın alt kısımlarındaki köşelerde meydana geldiği ve bu değerin 0,373 mm olduğu tespit edilmiştir. Plastik deformasyonun en çok etkilediği bölge kap alt bölgesidir. Bu bölgede deformasyon sertleşmesi nedeniyle maksimum basma ve çekme kuvvetleri oluşmakta ve dolayısıyla maksimum gerilme ve sertlik bu kısımda meydana gelmiştir. Maksimum sertlik kabın tabanının olduğu bölgede ve 61.4 HRC olarak ölçülmüştür. Minimum sertlik kap üst bölgesinde ölçülmüştür. Kabın üst ağız kısımlarına doğru sertliğin daha da düştüğü ve 43.8 HRC olduğu görülmüştür. Ortalama sertlik değeri ise 53.1 HRC olarak tespit edilmiştir. Sonuç olarak, dikdörtgen geometriye sahip kapların soğuk derin çekilmesinde, matris üst yüzeyine ve pot çemberinin alt yüzeyine açılar verilerek kalıp geometrisinin, kap cidar kalınlık değişimleri ve kap hasarları üzerinde önemli bir etkisinin olduğu tespit edilmiştir.

References

  • [1] R. Coles, M.J. Kirwan, (2011). Food and beverage packaging technology, 2nd Edition, Wiley-Blackwell, Publishing London UK.
  • [2] M. Colgan, J. Monaghan, (2002). Deep drawing process: Analysis and experiment, Journal of Materials Processing Technology, vol 132(1-3), 35-41.
  • [3] M. Hassan, L. Hezam, M. El-Sebaie, J. Purbolaksono, (2014). Deep drawing characteristics of square cups through conical dies, Procedia Engineering, vol. 81, 873-880.
  • [4] M.A. Hassan, I.M. Hassab-Allah, L.M.A. Hezam, N.A. Mardi, M. Hamdi, (2015). Deep drawing of asymmetric cups through a conical die without blank holder, Proceedings of the World Congress on Engineering 2015, London, U.K., July 1-3.
  • [5] A.A. Dhaiban, M.E.S. Soliman, M.G. El-Sebaie, (2013). Development of deep drawing without blank-holder for producing elliptic brass cups through conical dies, Journal of Engineering Sciences (JES), 41, (4), 1530-1548.
  • [6]H. Zein, M. El Sherbiny, M. Abd-Rabou, M.El Shazly, (2014). Thinning and spring back prediction of sheet metal in the deep drawing process, Materials and Design, 53, 797-808.
  • [7] R.R. Goud, K.E. Prasad, S.K. Singh, (2014). Formability limit diagrams of extra-deep-drawing steel at elevated temperatures, Procedia Materials Science, 6, 123-128.
  • [8] B.V.S. Rao, G.C.M. Reddy, G.K.M. Rao, P.V.R. Reddy, (2016). Influence of drawing ratio on thickness variation along the walls of deep-drawn cups, Journal of Manufacturing Engineering, 11(2), 86–93.
  • [9] R. Karl, (2008). Simulation of sheet metal forming-necessary developments in the future, LS-DYNA Awenderforum. Vol. 7, A(1), 59-68.
  • [10] A.S. Takalkar, L.B.M. Chinnapandi, (2019). Deep drawing process at the elevated temperature: A critical review and future research directions, CIRP Journal of Manufacturing Science and Technology, 27, 56-67,
  • [11] H. Zein, M. El-Sherbiny, M. Abd-Rabou, M. El Shazly, (2013). Effect of die design parameters on thinning of sheet metal in the deep drawing process, American Journal of Mechanical Engineering, 1(2), 20-29,
  • [12] A. C. S. Reddy, S. Rajesham, P. R. Reddy, T. P. Kumar, J. Goverdhan, (2015). An experimental study on the effect of process parameters in the deep draw using Taguchi technique, International Journal of Engineering Science and Technology, 7(1), 21-32.
  • [13] K. Mac, E.T. George, M.K. Scot, (2003). Handbook of Aluminum, Physical Metallurgy and Processes, Marcel Dekker Inc. vol. 1, New York USA.
  • [14] Z. Kailun, J.P. Denis, W. Liliang, L. Jianguo, (2018). A review on forming techniques for manufacturing lightweight complex-shaped aluminum panel components, International Journal of Lightweight Materials and Manufacture, vol. 1, 55-80.
  • [15] B. Vukota, (2004). Sheet Metal Formıng Processes And Die Design, Industrial Press Inc, New York USA.
  • [16] D. Cyril, H. George, L. Cain, V.C. Gold, (2012). Joyjeet Ghose. Tool Design, Special Indian Edition.
  • [17] B. Kenza, F.G. Mohammad, E.E. Hachmi, F. Musthapha, M. Mohamad, M. Mada, (2018). Modeling of anisotropy influence on thickness distribution of deep drawing sheet, International Conference on Robotics, Control and Automation Engineering, RCAE, Beijing, 26-28 December.
  • [18] S. Kilani, (2010). Sheet Metal Forming Processes, Constitutive Modelling and Numerical Simulation, Editor: Banabic D., Numerical Simulation of the Sheet Metal Forming Processes, Springer Science &Business Media. 213-295,
  • [19] P. Das, S.K. Panda, D.K. Pratihar, (2013). Modification of initial blank shape to minimize earing in the deep drawing process”. Advanced Materials Manufacturing&Characterization, vol. 3(1), 99-104.
  • [20] S. Pawan Nagda, S.B. Purnank, M.K. Shah, (2017). Finite element simulation of the deep drawing process to minimize earing, World Academy of Science, Engineering and Technology International Journal of Mechanical and Mechatronics Engineering, vol. 11(2), 413-416.
  • [21] K. Bouchaala, M.F. Ghanameh, M. Faqir, M. Mada, E. Esaadiqi, (2021). Numerical investigation of the effect of punch corner radius and die shoulder radius on the flange earrings for AA1050 and AA1100 aluminum alloys in the cylindrical deep drawing process, Heliyon vol. 7(4), e06662.
  • [22] D. Banabic, (2010). Sheet metal forming processes: Constitutive modeling and numerical simulation, Berlin Heidelberg Derdrecht, London New York, Springer.
  • [23] D.C. Chen, L. Cheng-Yu, YY. Lai, (2019). Finite element analysis of deep drawing, Advances in Intelligent Mechatronic Systems and Precision Engineering, 11(9), 1-10.
  • [24] S.M. Hussaini, G. Krishna, A.K. Gupta, S.K. Singh, (2015). Development of experimental and theoretical forming limit diagrams for warm forming of austenitic stainless steel 316, Journal of Manufacturing Processes, 18, 151–158.
  • [25] K. Zheng, D.J. Politis, L. Wang, J. Lin, (2018). A review on forming techniques for manufacturing lightweight complex-shaped aluminum panel components, International Journal of Lightweight Materials and Manufacture, 1(2), 55-80.
  • [26] A. Shaaban, A.S. Elakkad, (2021). Numerical and experimental analysis of single-acting stroke deep drawing of symmetric low-depth products without blank holder. Ain Shams Engineering Journal, vol. 12(3), 2907-2919.
  • [27] Choudhari, C.S., Khasbage, S.S. (2020). Experimental investigation of forming parameters for square cup deep drawing process, Materials Today: Proceedings, Elsevier Ltd. 44, 4261–4267.
  • [28] Tenner, J., Andreas, K., Radius, A., & Merklein, M. (2017). Numerical and experimental investigation of dry deep drawing of aluminum alloys with conventional and coated tool surfaces. Procedia engineering, 207, 2245-2250.
  • [29] Rivas-Menchi, A., Medellín-Castillo, H.I., de Lange, D.F., García-Zugasti, P. de J. (2018). Performance evaluation of analytical expressions for cylindrical and rectangular deep drawing force estimation, Journal of Manufacturing Processes, Elsevier. 36, 340–350.
  • [30] Dwivedi, R., Agnihotri, G. (2017). Study of deep drawing process parameters. Materials Today: Proceedings, 4(2), 820-826.
  • [31] Aminzahed, I., Mosavi Mashadi, M., Sereshk, M.R.V. (2017). Investigation of holder pressure and size effects in micro deep drawing of rectangular work pieces driven by piezoelectric actuator, Materials Science and Engineering C, Elsevier B.V. 71, 685–689.
  • [32] Ünal, E., (2011). Kare Kesitli Kapların Derin Çekilmesinde Kalıp Geometrisi ve Radyüsünün Çekme Oranına Etkisinin Araştırılması, Doktora Tezi, Fırat Üniversitesi, Elazığ/Türkiye. [33] Çapan, L., (2010). Metallere Plastik Şekil Verme, 5. Baskı, İstanbul/Türkiye, Çağlayan Kitabevi.
  • [34] Güneş, A.T., (2002). Pres İşleri Tekniği-Cilt2, 2. Baskı, Ankara/Türkiye, TMMOB Makina Mühendisleri Odası.
  • [35] Demiray, K., (2006). Al 1050 Malzemesinin Derin Çekme İşleminde Baskı Plakasının Etkisinin Teorik Ve Deneysel Olarak İncelenmesi, “Yüksek Lisans Tezi”. Zonguldak Karaelmas Üniversitesi, Karabük/Türkiye.
  • [36] Seçkin, Ö., (2005). DKP Sac Çeliğinin Derin Çekilmesinde Matris Yüzey Açı Değişiminin Araştırılması, Yüksek Lisans Tezi, Fırat Üniversitesi, Elazığ/Türkiye.
  • [37] Uzun, İ., Erişkin, Y., (1997). Sac Metal Kalıpçılığı, Ankara/Türkiye, Milli EğitimBakanlığı Yayınları.
  • [38] Larsson, L., (2005). Warm Sheet Metal Forming with Localized In-Tool Induction Heating, 1. Eddition, Sweden, Lund University.
  • [39] Savaş, V., Seçgin, Ö., (2010). An experimental investigation of formig load and side-wall thickness obtained by a new deep drawing die, International Journal of Material Forming, 3, 209-213.
  • 40] Cotterell, M., Schambergerova, J., Ziegelheim, J., Janovec, J., (2002). Depedence of micro-hardness on deformation of deep-drawing steel sheets, Journal of Materials Processing Technology, 124(3), 293–296.
  • [41] Aarón, R.M., Hugo, I.M.C., Dirk, F.L., Pedro de, J.G.Z., (2018). Performance evaluation of analytical expressions for cylindrical and rectangular deep drawing force estimation, Journal of Manufacturing Processes, 12 (36), 340–350.
  • [42] Hattalli, V.L., Srivatsa, S.R., (2016). Sheet Metal Forming Processes-Recent Technological Advances. International Conference on Advanced Materials and Applications (ICAMA 2016), Bengaluru, Karanataka, INDIA, June 15-17.
  • [43] Özçelik, G., (2008). Derin Çekme İşleminin Simülasyonu, Yüksek Lisans Tezi, Sakarya Üniversitesi Fen Bilimleri Enstitüsü, Sakarya.
  • [44] Saha, S., Pal, S. and Albright, J. A., (1982). Surgical drilling: design and performance of an improved drill, J. Biomechanic Eng., 104, 245-252.
There are 43 citations in total.

Details

Primary Language Turkish
Subjects Engineering
Journal Section Articles
Authors

Cebeli Özek 0000-0001-7603-415X

Publication Date December 30, 2022
Submission Date August 31, 2022
Published in Issue Year 2022

Cite

APA Özek, C. (2022). Dikdörtgen Geometriye Sahip Kapların Soğuk Derin Çekilmesinde Kalıp Geometrisinin Kap Hasarları Üzerindeki Etkisi. International Journal of Innovative Engineering Applications, 6(2), 340-350. https://doi.org/10.46460/ijiea.1169005
AMA Özek C. Dikdörtgen Geometriye Sahip Kapların Soğuk Derin Çekilmesinde Kalıp Geometrisinin Kap Hasarları Üzerindeki Etkisi. ijiea, IJIEA. December 2022;6(2):340-350. doi:10.46460/ijiea.1169005
Chicago Özek, Cebeli. “Dikdörtgen Geometriye Sahip Kapların Soğuk Derin Çekilmesinde Kalıp Geometrisinin Kap Hasarları Üzerindeki Etkisi”. International Journal of Innovative Engineering Applications 6, no. 2 (December 2022): 340-50. https://doi.org/10.46460/ijiea.1169005.
EndNote Özek C (December 1, 2022) Dikdörtgen Geometriye Sahip Kapların Soğuk Derin Çekilmesinde Kalıp Geometrisinin Kap Hasarları Üzerindeki Etkisi. International Journal of Innovative Engineering Applications 6 2 340–350.
IEEE C. Özek, “Dikdörtgen Geometriye Sahip Kapların Soğuk Derin Çekilmesinde Kalıp Geometrisinin Kap Hasarları Üzerindeki Etkisi”, ijiea, IJIEA, vol. 6, no. 2, pp. 340–350, 2022, doi: 10.46460/ijiea.1169005.
ISNAD Özek, Cebeli. “Dikdörtgen Geometriye Sahip Kapların Soğuk Derin Çekilmesinde Kalıp Geometrisinin Kap Hasarları Üzerindeki Etkisi”. International Journal of Innovative Engineering Applications 6/2 (December 2022), 340-350. https://doi.org/10.46460/ijiea.1169005.
JAMA Özek C. Dikdörtgen Geometriye Sahip Kapların Soğuk Derin Çekilmesinde Kalıp Geometrisinin Kap Hasarları Üzerindeki Etkisi. ijiea, IJIEA. 2022;6:340–350.
MLA Özek, Cebeli. “Dikdörtgen Geometriye Sahip Kapların Soğuk Derin Çekilmesinde Kalıp Geometrisinin Kap Hasarları Üzerindeki Etkisi”. International Journal of Innovative Engineering Applications, vol. 6, no. 2, 2022, pp. 340-5, doi:10.46460/ijiea.1169005.
Vancouver Özek C. Dikdörtgen Geometriye Sahip Kapların Soğuk Derin Çekilmesinde Kalıp Geometrisinin Kap Hasarları Üzerindeki Etkisi. ijiea, IJIEA. 2022;6(2):340-5.