Conference Paper
BibTex RIS Cite

Light-Emitting Properties of Pyrimidine-5-Carbonitrile Derivatives: a Theoretical Calculation

Year 2022, , 55 - 58, 28.06.2022
https://doi.org/10.46460/ijiea.935455

Abstract

In this study, 4,6-Di (9H-carbazol-9-yl) pyrimidine-5-carbonitrile (C1), 4,6-bis (3,6-di-tert-butyl-9H-carbazol-9-yl) pyrimidine-5-carbonitrile (C2), 4,6-bis (3,6-dimethoxy-9H-carbazol-9-yl) pyrimidine-5-carbonitrile (C3) compounds were optimized at the B3LYP/6-31G(d) level. Energy densities of frontier molecular orbitals were investigated with molecular properties. Vertical ionization potentials (IPv), adiabatic ionization potential (IPa) (in eV), vertical electron affinity (EAv), adiabatic electron affinity (EAa), the hole reorganization energy (h )and electron reorganization energy (e ) were calculated (in eV) for C1, C2 and C3 compounds. e values of the C1 and C3 compounds are 0.29 and 0.30 eV and the h value is 0.18 and 0.20 eV, respectively. It can be said that the C1 and C3 compounds are not suitable as an electron bearing layers (ETL) material since its e values are greater than 0.276 eV and that its h value is less than 0.290 eV, so they are a suitable material for the hole bearing layers (HTL). The C2 compound is suitable for both ETL and HTL materials.

References

  • [1] Kasapseçkin, M.A., Altuncu, D., Innovative Materials in Interior Design: Organic Light Emitting Textiles (Oleds), Adv. Mater. Res. 689, 254-259, 2013.
  • [2] Özkan, N., Erkan, S., Sayın, K., Karakaş, D., Research on structural, spectral (IR, UV-Vis, H-1- and C-13-NMR) and light emitting properties of triisocyano-based trinuclear Au(I) complexes, Chemical Papers, 75, 2415–2425, 2020
  • [3] Erkan, S., Karakaş, D., A theoretical study on cyclometalated iridium (III) complexes by using a density functional theory, J. Theor. Comput Chem, 19, 2050006-21, 2020.
  • [4] Tsiko, U., Bezvikonnyi, O., Sych, G., Keruckiene, R., Volyniuk, D., Simokaitiene, J., Danyliv, I., Danyliv, Y., Bucinskas, A., Tan, X., Grazulevicius, J. V., Multifunctional derivatives of pyrimidine-5-carbonitrile and differently substituted carbazoles for doping-free sky-blue OLEDs and luminescent sensors of oxygen, J. Adv. Res, In press.
  • [5] Ko, C.W., Tao, Y. T., Bright white organic light-emitting diode, Appl. Phys. Lett. 79,4234–4236, 2001.
  • [6] Li, J., Hu, L., Wang, L., Zhou, Y., Grüner, G., Marks, T. J., Organic light-emitting diodes having carbon nanotube anodes, 6(11), Nano let, 2472-2477, 2006.
  • [7] Wen, W., Wang, B., Li, L., Yu, J. S., Jiang, Y. D., High performance white organic light-emitting devices based on a novel red fluorescent dye 3-(dicyanomethylene)-5, 5-dimethyl-1-(4-dimethylamino-styryl) cyclohexene, 58(11), Acta. Phys. Sin, 8014-8020, 2009.
  • [8] Krames, M. R., Amano, H., Brown, J. J., Heremans, P. L., Introduction to the issue on high-efficiency light-emitting diodes, IEEE J. Sel. Top. Quantum Electron. 8, 185–188, 2002.
  • [9] Liu, N.L., Ai, N., Hu, D.G., Yu, S.F., Peng, J.B., Cao, Y., Wang, J., Effect of Spin-Coating Process on The Performance of Passive-matrix Organic Light-Emitting Display, Acta Phys. Sin, 60, 087805, 2011.
  • [10] Üngördü, A., Charge transfer properties of Gaq3 and its derivatives: An OLED study, Chem. Phys. Lett, 733, 136696, 2019.
  • [11] Dennington II, R. D., Keith, T. A., J. M. Millam., GaussView 5.0, Wallingford, CT. 2009.
  • [12] Frisch MJ, Foresman JB GAUSSIAN 98 user’s reference. Gaussian. Inc., Pittsburgh, p 15106, 1998.
  • [13] Kaya, S., Erkan, S., Karakaş, D., Computational investigation of molecular structures, spectroscopic properties and antitumor-antibacterial activities of some Schiff bases, Spectrochim. Acta A Mol. Biomol. Spectrosc, 244, 118829, 2021.
  • [14] Karakaş, D., Erkan Kariper, S., Theoretical investigation on the vibrational and electronic spectra of three isomeric forms of dicobalt octacarbonyl, J Mol Struct 1062:77–81,2014.
  • [15] Kim, J. H., Triambulo, R. E., Park, J. W., Effects of the interfacial charge injection properties of silver nanowire transparent conductive electrodes on the performance of organic light-emitting diodes, J. Appl. Phys, 121(10), 105304, 2017.
  • [16] Zhao, J., X., Chen, Z., Yang, T., Liu, Z., Yang, Zhang, Y., Z, Chi., Highly-Efficient Doped and Nondoped Organic Light-Emitting Diodes with External Quantum Efficiencies over 20% from a Multifunctional Green Thermally Activated Delayed Fluorescence Emitter, J Phys Chem C, 123(2), 1015-1020, 2019.
  • [17] Stark, M. S., Epoxidation of Alkenes by Peroxyl Radicals in the Gas Phase:  Structure−Activity Relationships, J Phys Chem A, 101(44), 8296-8301, 1997.
  • [18] Erkan, S., Activity of the rocuronium molecule and its derivatives: A theoreticalcalculation, J. Mol. Struct, 1189, 257-264, 2019.
  • [19] Gruhn, N. E., Filho D. A da S., Bill, T. G., Malagoli, M., Coropceanu, V., Kahn., A., Brédas, J. L., The vibrational reorganization energy in pentacene: molecular influences on charge transport, J. Am. Chem. Soc, 124(27), 7918-7919, 2020.
  • [20]Gao, J., Li, J., Li, X., Han, D., Guo, P., Zhu, X., Shang, X., Theoretical investigation on the effect of the modification of 2-phenylpyridine ligand on the photophysical properties for a series of iridium(III) complexes with carbazate ancillary ligands, J. Lumin, 209, 365-371,2019.
  • [21] Üngördü, A., Electronic, optical, and charge transfer properties of porphyrin and metallated porphyrins in different media, Int. J. Quantum Chem, 120(6), e26128, 2020.
  • [22] Chan, R. K., Liao, S. C., Dipole moments, charge-transfer parameters, and ionization potentials of the methyl-substituted benzene–tetracyanoethylene complexes, Can. J. Chem., 48 (2), 299-305,1970.

Pirimidin-5-Karbonitril Türevlerinin ve Farklı Şekilde İkame Edilmiş Karbazollerin Işık Yayan Özellikleri: Teorik Bir Hesaplama

Year 2022, , 55 - 58, 28.06.2022
https://doi.org/10.46460/ijiea.935455

Abstract

Bu çalışmada 4,6-Di (9H-karbazol-9-il) pirimidin-5-karbonitril (C1), 4,6-bis (3,6-di-tert-butil-9H-karbazol-9-il ) pirimidin-5-karbonitril (C2), 4,6-bis (3,6-dimetoksi-9H-karbazol-9-il) pirimidin-5-karbonitril (C3) bileşikleri B3LYP / 6-31G (d ) seviyesi. Sınır moleküler orbitallerin enerji yoğunlukları moleküler özellikleri incelenmiştir. Dikey iyonlaşma potansiyelleri (IPv), adyabatik iyonizasyon potansiyeli (IPa) (eV cinsinden), dikey elektron afinitesi (EAv), adyabatik elektron afinitesi (EAa), delik yeniden organizasyon enerjisi (h) ve elektron yeniden organizasyon enerjisi (e) hesaplandı (eV cinsinden) C1, C2 ve C3 bileşikleri için. C1 ve C3 bileşiklerinin e değerleri 0.29 ve 0.30 eV ve h değeri sırasıyla 0.18 ve 0.20 eV'dir. C1 ve C3 bileşiklerinin e değerleri 0,276 eV'den büyük ve h değeri 0,290 eV'den küçük olduğu için elektron taşıyan tabakalar (ETL) malzemesi olarak uygun olmadığı söylenebilir, bu nedenle delik yatak katmanları (HTL) için uygun bir malzemedir. C2 bileşiği hem ETL hem de HTL malzemeleri için uygundur.

References

  • [1] Kasapseçkin, M.A., Altuncu, D., Innovative Materials in Interior Design: Organic Light Emitting Textiles (Oleds), Adv. Mater. Res. 689, 254-259, 2013.
  • [2] Özkan, N., Erkan, S., Sayın, K., Karakaş, D., Research on structural, spectral (IR, UV-Vis, H-1- and C-13-NMR) and light emitting properties of triisocyano-based trinuclear Au(I) complexes, Chemical Papers, 75, 2415–2425, 2020
  • [3] Erkan, S., Karakaş, D., A theoretical study on cyclometalated iridium (III) complexes by using a density functional theory, J. Theor. Comput Chem, 19, 2050006-21, 2020.
  • [4] Tsiko, U., Bezvikonnyi, O., Sych, G., Keruckiene, R., Volyniuk, D., Simokaitiene, J., Danyliv, I., Danyliv, Y., Bucinskas, A., Tan, X., Grazulevicius, J. V., Multifunctional derivatives of pyrimidine-5-carbonitrile and differently substituted carbazoles for doping-free sky-blue OLEDs and luminescent sensors of oxygen, J. Adv. Res, In press.
  • [5] Ko, C.W., Tao, Y. T., Bright white organic light-emitting diode, Appl. Phys. Lett. 79,4234–4236, 2001.
  • [6] Li, J., Hu, L., Wang, L., Zhou, Y., Grüner, G., Marks, T. J., Organic light-emitting diodes having carbon nanotube anodes, 6(11), Nano let, 2472-2477, 2006.
  • [7] Wen, W., Wang, B., Li, L., Yu, J. S., Jiang, Y. D., High performance white organic light-emitting devices based on a novel red fluorescent dye 3-(dicyanomethylene)-5, 5-dimethyl-1-(4-dimethylamino-styryl) cyclohexene, 58(11), Acta. Phys. Sin, 8014-8020, 2009.
  • [8] Krames, M. R., Amano, H., Brown, J. J., Heremans, P. L., Introduction to the issue on high-efficiency light-emitting diodes, IEEE J. Sel. Top. Quantum Electron. 8, 185–188, 2002.
  • [9] Liu, N.L., Ai, N., Hu, D.G., Yu, S.F., Peng, J.B., Cao, Y., Wang, J., Effect of Spin-Coating Process on The Performance of Passive-matrix Organic Light-Emitting Display, Acta Phys. Sin, 60, 087805, 2011.
  • [10] Üngördü, A., Charge transfer properties of Gaq3 and its derivatives: An OLED study, Chem. Phys. Lett, 733, 136696, 2019.
  • [11] Dennington II, R. D., Keith, T. A., J. M. Millam., GaussView 5.0, Wallingford, CT. 2009.
  • [12] Frisch MJ, Foresman JB GAUSSIAN 98 user’s reference. Gaussian. Inc., Pittsburgh, p 15106, 1998.
  • [13] Kaya, S., Erkan, S., Karakaş, D., Computational investigation of molecular structures, spectroscopic properties and antitumor-antibacterial activities of some Schiff bases, Spectrochim. Acta A Mol. Biomol. Spectrosc, 244, 118829, 2021.
  • [14] Karakaş, D., Erkan Kariper, S., Theoretical investigation on the vibrational and electronic spectra of three isomeric forms of dicobalt octacarbonyl, J Mol Struct 1062:77–81,2014.
  • [15] Kim, J. H., Triambulo, R. E., Park, J. W., Effects of the interfacial charge injection properties of silver nanowire transparent conductive electrodes on the performance of organic light-emitting diodes, J. Appl. Phys, 121(10), 105304, 2017.
  • [16] Zhao, J., X., Chen, Z., Yang, T., Liu, Z., Yang, Zhang, Y., Z, Chi., Highly-Efficient Doped and Nondoped Organic Light-Emitting Diodes with External Quantum Efficiencies over 20% from a Multifunctional Green Thermally Activated Delayed Fluorescence Emitter, J Phys Chem C, 123(2), 1015-1020, 2019.
  • [17] Stark, M. S., Epoxidation of Alkenes by Peroxyl Radicals in the Gas Phase:  Structure−Activity Relationships, J Phys Chem A, 101(44), 8296-8301, 1997.
  • [18] Erkan, S., Activity of the rocuronium molecule and its derivatives: A theoreticalcalculation, J. Mol. Struct, 1189, 257-264, 2019.
  • [19] Gruhn, N. E., Filho D. A da S., Bill, T. G., Malagoli, M., Coropceanu, V., Kahn., A., Brédas, J. L., The vibrational reorganization energy in pentacene: molecular influences on charge transport, J. Am. Chem. Soc, 124(27), 7918-7919, 2020.
  • [20]Gao, J., Li, J., Li, X., Han, D., Guo, P., Zhu, X., Shang, X., Theoretical investigation on the effect of the modification of 2-phenylpyridine ligand on the photophysical properties for a series of iridium(III) complexes with carbazate ancillary ligands, J. Lumin, 209, 365-371,2019.
  • [21] Üngördü, A., Electronic, optical, and charge transfer properties of porphyrin and metallated porphyrins in different media, Int. J. Quantum Chem, 120(6), e26128, 2020.
  • [22] Chan, R. K., Liao, S. C., Dipole moments, charge-transfer parameters, and ionization potentials of the methyl-substituted benzene–tetracyanoethylene complexes, Can. J. Chem., 48 (2), 299-305,1970.
There are 22 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Articles
Authors

Necdet Karakoyun 0000-0002-6083-6921

Sultan Erkan 0000-0001-6744-929X

Publication Date June 28, 2022
Submission Date May 10, 2021
Published in Issue Year 2022

Cite

APA Karakoyun, N., & Erkan, S. (2022). Light-Emitting Properties of Pyrimidine-5-Carbonitrile Derivatives: a Theoretical Calculation. International Journal of Innovative Engineering Applications, 6(1), 55-58. https://doi.org/10.46460/ijiea.935455
AMA Karakoyun N, Erkan S. Light-Emitting Properties of Pyrimidine-5-Carbonitrile Derivatives: a Theoretical Calculation. ijiea, IJIEA. June 2022;6(1):55-58. doi:10.46460/ijiea.935455
Chicago Karakoyun, Necdet, and Sultan Erkan. “Light-Emitting Properties of Pyrimidine-5-Carbonitrile Derivatives: A Theoretical Calculation”. International Journal of Innovative Engineering Applications 6, no. 1 (June 2022): 55-58. https://doi.org/10.46460/ijiea.935455.
EndNote Karakoyun N, Erkan S (June 1, 2022) Light-Emitting Properties of Pyrimidine-5-Carbonitrile Derivatives: a Theoretical Calculation. International Journal of Innovative Engineering Applications 6 1 55–58.
IEEE N. Karakoyun and S. Erkan, “Light-Emitting Properties of Pyrimidine-5-Carbonitrile Derivatives: a Theoretical Calculation”, ijiea, IJIEA, vol. 6, no. 1, pp. 55–58, 2022, doi: 10.46460/ijiea.935455.
ISNAD Karakoyun, Necdet - Erkan, Sultan. “Light-Emitting Properties of Pyrimidine-5-Carbonitrile Derivatives: A Theoretical Calculation”. International Journal of Innovative Engineering Applications 6/1 (June 2022), 55-58. https://doi.org/10.46460/ijiea.935455.
JAMA Karakoyun N, Erkan S. Light-Emitting Properties of Pyrimidine-5-Carbonitrile Derivatives: a Theoretical Calculation. ijiea, IJIEA. 2022;6:55–58.
MLA Karakoyun, Necdet and Sultan Erkan. “Light-Emitting Properties of Pyrimidine-5-Carbonitrile Derivatives: A Theoretical Calculation”. International Journal of Innovative Engineering Applications, vol. 6, no. 1, 2022, pp. 55-58, doi:10.46460/ijiea.935455.
Vancouver Karakoyun N, Erkan S. Light-Emitting Properties of Pyrimidine-5-Carbonitrile Derivatives: a Theoretical Calculation. ijiea, IJIEA. 2022;6(1):55-8.