Review
BibTex RIS Cite

A Review Study on Biocompatible Improvements of NiTi-based Shape Memory Alloys

Year 2021, , 125 - 130, 31.12.2021
https://doi.org/10.46460/ijiea.957722

Abstract

NiTi-based shape memory alloys (SMAs) have many applications, especially for implantation, however since they are not a passive material so it is important to investigate them from different biocompatible perspectives. In this study, we introduced the important physical characteristics of NiTi alloys, then we explained different biocompatible terminologies, including carcinogenic, genotoxic, cytotoxicity, mutagenic, allergic, and corrosivity. We collected some important previous works that investigated the biocompatibility of NiTi-based SMAs and the different techniques used for improving the alloy and diminishing the hazard due to Ni-leakages.

References

  • 1. Qader, I.N., et al., A Review of Smart Materials: Researches and Applications. El-Cezerî Journal of Science and Engineering, 2019. 6(3): p. 755-788.
  • 2. Lobo, P.S., J. Almeida, and L. Guerreiro, Shape Memory Alloys Behaviour: A Review. Procedia Engineering, 2015. 114: p. 776-783.
  • 3. Kök, M., et al., Thermal stability and some thermodynamics analysis of heat treated quaternary CuAlNiTa shape memory alloy. Materials Research Express, 2019. 7(1): p. 015702.
  • 4. Mohammed, S.S., et al., The Developments of piezoelectric Materials and Shape Memory Alloys in Robotic Actuator Systems. Avrupa Bilim ve Teknoloji Dergisi, 2019(17): p. 1014-1030.
  • 5. Mohammed, S.S., et al., Influence of Ta Additive into Cu84−xAl13Ni3 (wt%) Shape Memory Alloy Produced by Induction Melting. Iranian Journal of Science and Technology, Transactions A: Science, 2020. 44(4): p. 1167-1175.
  • 6. Dagdelen, F., et al., Influence of the Nb Content on the Microstructure and Phase Transformation Properties of NiTiNb Shape Memory Alloys. JOM, 2020. 72(4): p. 1664-1672.
  • 7. Qader, I.N., et al., Mechanical and Thermal Behavior of Cu84−xAl13Ni3Hfx Shape Memory Alloys. Iranian Journal of Science and Technology, Transactions A: Science, 2020.
  • 8. Tatar, C., R. Acar, and I.N. Qader, Investigation of thermodynamic and microstructural characteristics of NiTiCu shape memory alloys produced by arc-melting method. The European Physical Journal Plus, 2020. 135(3): p. 311.
  • 9. Qader, I.N., et al., The Effect of Different Parameters on Shape Memory Alloys. Sakarya Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 2020. 24(5): p. 881-902.
  • 10. Qader, I.N., M. Kok, and Z.D. Cirak, The effects of substituting Sn for Ni on the thermal and some other characteristics of NiTiSn shape memory alloys. Journal of Thermal Analysis and Calorimetry, 2020.
  • 11. Qader, I.N., et al., The Influence of Time-Dependent Aging Process on the Thermodynamic Parameters and Microstructures of Quaternary Cu79–Al12–Ni4–Nb5 (wt%) Shape Memory Alloy. Iranian Journal of Science and Technology, Transactions A: Science, 2020. 44(3): p. 903-910.
  • 12. Mohammed, S.S., et al., The Relationship between Cobalt Amount and Oxidation Parameters in NiTiCo Shape Memory Alloys. Physics of Metals and Metallography, 2020. 121(14): p. 1411-1417.
  • 13. Balci, E., et al., Effects of substituting Nb with V on thermal analysis and biocompatibility assessment of quaternary NiTiNbV SMA. The European Physical Journal Plus, 2021. 136(2): p. 145.
  • 14. Buytoz, S., et al., Microstructure Analysis and Thermal Characteristics of NiTiHf Shape Memory Alloy with Different Composition. Metals and Materials International, 2019.
  • 15. Dagdelen, F., et al., Influence of Ni addition and heat treatment on phase transformation temperatures and microstructures of a ternary CuAlCr alloy. The European Physical Journal Plus, 2019. 134(2): p. 66.
  • 16. Kök, M., et al., Effects of heat treatment temperatures on phase transformation, thermodynamical parameters, crystal microstructure, and electrical resistivity of NiTiV shape memory alloy. Journal of Thermal Analysis and Calorimetry, 2020. 139(6): p. 3405-3413.
  • 17. Ercan, E., F. Dagdelen, and I.N. Qader, Effect of tantalum contents on transformation temperatures, thermal behaviors and microstructure of CuAlTa HTSMAs. Journal of Thermal Analysis and Calorimetry, 2020. 139(1): p. 29-36.
  • 18. Dagdelen, F., M. Kok, and I.N. Qader, Effects of Ta Content on Thermodynamic Properties and Transformation Temperatures of Shape Memory NiTi Alloy. Metals and Materials International, 2019. 25(6): p. 1420-1427.
  • 19. Kök, M., et al., The effects of cobalt elements addition on Ti2Ni phases, thermodynamics parameters, crystal structure and transformation temperature of NiTi shape memory alloys. The European Physical Journal Plus, 2019. 134(5): p. 197.
  • 20. Acar, E., M. Kok, and I.N. Qader, Exploring surface oxidation behavior of NiTi–V alloys. The European Physical Journal Plus, 2020. 135(1): p. 58.
  • 21. Qader, I.N., M. Kök, and F. Dağdelen, Effect of heat treatment on thermodynamics parameters, crystal and microstructure of (Cu-Al-Ni-Hf) shape memory alloy. Physica B: Condensed Matter, 2019. 553: p. 1-5.
  • 22. Zafar, M.S., et al., 2 - Properties of dental biomaterials, in Advanced Dental Biomaterials, Z. Khurshid, et al., Editors. 2019, Woodhead Publishing. p. 7-35.
  • 23. Jin, S., et al., Influence of TiN coating on the biocompatibility of medical NiTi alloy. Colloids and Surfaces B: Biointerfaces, 2013. 101: p. 343-349.
  • 24. Zhang, L., et al., Graphene enhanced anti-corrosion and biocompatibility of NiTi alloy. NanoImpact, 2017. 7: p. 7-14.
  • 25. Tao, H., et al., In vitro biocompatibility of titanium-nickel alloy with titanium oxide film by H2O2 oxidation. Transactions of Nonferrous Metals Society of China, 2007. 17(3): p. 553-557.
  • 26. Lagoudas, D.C., Shape memory alloys: modeling and engineering applications. 2008: Springer.
  • 27. Jani, J.M., et al., A review of shape memory alloy research, applications and opportunities. Materials & Design (1980-2015), 2014. 56: p. 1078-1113.
  • 28. Hu, J.W. and M.-H. Noh, Seismic response and evaluation of SDOF self-centering friction damping braces subjected to several earthquake ground motions. Advances in Materials Science and Engineering, 2015. 2015.
  • 29. Biesiekierski, A., et al., A new look at biomedical Ti-based shape memory alloys. Acta Biomaterialia, 2012. 8(5): p. 1661-1669.
  • 30. Hayes, R.B., The carcinogenicity of metals in humans. Cancer Causes & Control, 1997. 8(3): p. 371-385.
  • 31. Hayashi, Y., Overview of genotoxic carcinogens and non-genotoxic carcinogens. Experimental and Toxicologic Pathology, 1992. 44(8): p. 465-471.
  • 32. Das, S., et al., Chapter 25 - Causes of cancer: physical, chemical, biological carcinogens, and viruses, in Biomaterials for 3D Tumor Modeling, S.C. Kundu and R.L. Reis, Editors. 2020, Elsevier. p. 607-641.
  • 33. El Abedin, S.Z., U. Welz-Biermann, and F. Endres, A study on the electrodeposition of tantalum on NiTi alloy in an ionic liquid and corrosion behaviour of the coated alloy. Electrochemistry communications, 2005. 7(9): p. 941-946.
  • 34. YAN, X.-j., D.-z. YANG, and X.-p. LIU, Electrochemical behavior of YAG laser-welded NiTi shape memory alloy. Transactions of Nonferrous Metals Society of China, 2006. 16(3): p. 572-576.
  • 35. Villermaux, F., et al., Excimer laser treatment of NiTi shape memory alloy biomaterials. Applied surface science, 1997. 109: p. 62-66.
  • 36. Tan, L., R. Dodd, and W. Crone, Corrosion and wear-corrosion behavior of NiTi modified by plasma source ion implantation. Biomaterials, 2003. 24(22): p. 3931-3939.
  • 37. Sun, F., et al., Surface modifications of Nitinol for biomedical applications. Colloids and Surfaces B: Biointerfaces, 2008. 67(1): p. 132-139.
  • 38. O’Brien, B., W. Carroll, and M. Kelly, Passivation of nitinol wire for vascular implants—a demonstration of the benefits. Biomaterials, 2002. 23(8): p. 1739-1748.
  • 39. Kurelec, B., The genotoxic disease syndrome. Marine Environmental Research, 1993. 35(4): p. 341-348.
  • 40. Martin-Camean, A., et al., In vitro and in vivo evidence of the cytotoxic and genotoxic effects of metal ions released by orthodontic appliances: A review. Environmental toxicology and pharmacology, 2015. 40(1): p. 86-113.
  • 41. Assad, M., et al., Comparative in vitro biocompatibility of nickel‐titanium, pure nickel, pure titanium, and stainless steel: genotoxicity and atomic absorption evaluation. Bio-medical materials and engineering, 1999. 9(1): p. 1-12.
  • 42. Andersen, M.H., et al., Cytotoxic T cells. Journal of Investigative Dermatology, 2006. 126(1): p. 32-41.
  • 43. Riss, T.L., R.A. Moravec, and A.L. Niles, Cytotoxicity Testing: Measuring Viable Cells, Dead Cells, and Detecting Mechanism of Cell Death, in Mammalian Cell Viability: Methods and Protocols, M.J. Stoddart, Editor. 2011, Humana Press: Totowa, NJ. p. 103-114.
  • 44. Tabish, T., et al., In vivo cytotoxic evaluation of Ti–Ni–Fe shape memory alloys. Materials Technology, 2014. 29(3): p. 139-143.
  • 45. Ariza, M.E. and M.V. Williams, Mutagenesis of AS52 cells by low concentrations of lead (II) and mercury (II). Environmental and molecular mutagenesis, 1996. 27(1): p. 30-33.
  • 46. Singer, B. and D. Grunberger, Molecular biology of mutagens and carcinogens. 2012: Springer Science & Business Media.
  • 47. Adler, I.D., Spermatogenesis and mutagenicity of environmental hazards: extrapolation of genetic risk from mouse to man. Andrologia, 2000. 32(4‐5): p. 233-237.
  • 48. Joshi, N., A. Ravindran, and V. Mahajan, Investigations on chemical mutagen sensitivity in onion (Allium cepa L.). International Journal of Botany, 2011. 7(3): p. 243-248.
  • 49. Christie, N.T. and D.M. Tummolo, The effect of Ni (II) on DNA replication. Biological trace element research, 1989. 21(1): p. 3-12.
  • 50. Campbell, A., et al., Overview of Allergic Mechanisms. Drugs, 1996. 52(1): p. 15-19.
  • 51. Wiltshire, W.A., M.R. Ferreira, and A.J. Ligthelm, Allergies to dental materials. Quintessence International-English Edition, 1996. 27: p. 513-520.
  • 52. Baer, H., Allergic contact dermatitis from plants. Handbook of Natural Toxins: Plant and Fungal Toxins, 1983. 1: p. 421-442.
  • 53. Burrows, D., Hypersensitivity to mercury, nickel and chromium in relation to dental materials. International dental journal, 1986. 36(1): p. 30-34.
  • 54. Jones, T.K., et al., Dental implications of nickel hypersensitivity. The Journal of prosthetic dentistry, 1986. 56(4): p. 507-509.
  • 55. Al-Waheidi, E., Allergic reaction to nickel orthodontic wires: a case report. Quintessence International, 1995. 26(6).
  • 56. Rahilly, G. and N. Price, Nickel allergy and orthodontics. Journal of orthodontics, 2003. 30(2): p. 171-174.
  • 57. Kim, H. and J.W. Johnson, Corrosion of stainless steel, nickel-titanium, coated nickel-titanium, and titanium orthodontic wires. The Angle Orthodontist, 1999. 69(1): p. 39-44.
  • 58. Novikova, G., Introduction to corrosion of bioimplants. Protection of Metals and Physical Chemistry of Surfaces, 2011. 47(3): p. 372-380.
  • 59. Manivasagam, G., D. Dhinasekaran, and A. Rajamanickam, Biomedical implants: corrosion and its prevention-a review. Recent patents on corrosion science, 2010.
  • 60. Jean, R.-D. and J.-B. Duh, The thermal cycling effect on Ti-Ni-Cu shape memory alloy. Scripta metallurgica et materialia, 1995. 32(6).
  • 61. Ruiz, J., et al., Effect of B on the corrosion resistance of a Ni-Ti alloy in simulated human body solution. International Journal of Electrochemical Science, 2010. 5(4): p. 593-604.
  • 62. Iijima, M., et al., Corrosion behavior and surface structure of orthodontic Ni-Ti alloy wires. Dental materials journal, 2001. 20(1): p. 103-113.
  • 63. Yan, S., et al., A state-of-the-art review on passivation and biofouling of Ti and its alloys in marine environments. Journal of Materials Science & Technology, 2018. 34(3): p. 421-435.
  • 64. Dutta, R.S., et al., Biocompatibility of Ni–Ti shape memory alloy. British Corrosion Journal, 1993. 28(3): p. 217-221.
  • 65. Sato, N. and G. Okamoto, Electrochemical Passivation of Metals, in Electrochemical Materials Science, J.O.M. Bockris, et al., Editors. 1981, Springer US: Boston, MA. p. 193-245.
  • 66. Simka, W., et al., Electropolishing and passivation of NiTi shape memory alloy. Electrochimica Acta, 2010. 55(7): p. 2437-2441.
  • 67. Barison, S., et al., Characterisation of surface oxidation of nickel–titanium alloy by ion-beam and electrochemical techniques. Electrochimica Acta, 2004. 50(1): p. 11-18.
  • 68. Chu, C.L., et al., Surface structure and biomedical properties of chemically polished and electropolished NiTi shape memory alloys. Materials Science and Engineering: C, 2008. 28(8): p. 1430-1434.

A Review Study on Biocompatible Improvements of NiTi-based Shape Memory Alloys

Year 2021, , 125 - 130, 31.12.2021
https://doi.org/10.46460/ijiea.957722

Abstract

NiTi-based shape memory alloys (SMAs) have many applications, especially for implantation, however since they are not a passive material so it is important to investigate them from different biocompatible perspectives. In this study, we introduced the important physical characteristics of NiTi alloys, then we explained different biocompatible terminologies, including carcinogenic, genotoxic, cytotoxicity, mutagenic, allergic, and corrosivity. We collected some important previous works that investigated the biocompatibility of NiTi-based SMAs and the different techniques used for improving the alloy and diminishing the hazard due to Ni-leakages.

References

  • 1. Qader, I.N., et al., A Review of Smart Materials: Researches and Applications. El-Cezerî Journal of Science and Engineering, 2019. 6(3): p. 755-788.
  • 2. Lobo, P.S., J. Almeida, and L. Guerreiro, Shape Memory Alloys Behaviour: A Review. Procedia Engineering, 2015. 114: p. 776-783.
  • 3. Kök, M., et al., Thermal stability and some thermodynamics analysis of heat treated quaternary CuAlNiTa shape memory alloy. Materials Research Express, 2019. 7(1): p. 015702.
  • 4. Mohammed, S.S., et al., The Developments of piezoelectric Materials and Shape Memory Alloys in Robotic Actuator Systems. Avrupa Bilim ve Teknoloji Dergisi, 2019(17): p. 1014-1030.
  • 5. Mohammed, S.S., et al., Influence of Ta Additive into Cu84−xAl13Ni3 (wt%) Shape Memory Alloy Produced by Induction Melting. Iranian Journal of Science and Technology, Transactions A: Science, 2020. 44(4): p. 1167-1175.
  • 6. Dagdelen, F., et al., Influence of the Nb Content on the Microstructure and Phase Transformation Properties of NiTiNb Shape Memory Alloys. JOM, 2020. 72(4): p. 1664-1672.
  • 7. Qader, I.N., et al., Mechanical and Thermal Behavior of Cu84−xAl13Ni3Hfx Shape Memory Alloys. Iranian Journal of Science and Technology, Transactions A: Science, 2020.
  • 8. Tatar, C., R. Acar, and I.N. Qader, Investigation of thermodynamic and microstructural characteristics of NiTiCu shape memory alloys produced by arc-melting method. The European Physical Journal Plus, 2020. 135(3): p. 311.
  • 9. Qader, I.N., et al., The Effect of Different Parameters on Shape Memory Alloys. Sakarya Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 2020. 24(5): p. 881-902.
  • 10. Qader, I.N., M. Kok, and Z.D. Cirak, The effects of substituting Sn for Ni on the thermal and some other characteristics of NiTiSn shape memory alloys. Journal of Thermal Analysis and Calorimetry, 2020.
  • 11. Qader, I.N., et al., The Influence of Time-Dependent Aging Process on the Thermodynamic Parameters and Microstructures of Quaternary Cu79–Al12–Ni4–Nb5 (wt%) Shape Memory Alloy. Iranian Journal of Science and Technology, Transactions A: Science, 2020. 44(3): p. 903-910.
  • 12. Mohammed, S.S., et al., The Relationship between Cobalt Amount and Oxidation Parameters in NiTiCo Shape Memory Alloys. Physics of Metals and Metallography, 2020. 121(14): p. 1411-1417.
  • 13. Balci, E., et al., Effects of substituting Nb with V on thermal analysis and biocompatibility assessment of quaternary NiTiNbV SMA. The European Physical Journal Plus, 2021. 136(2): p. 145.
  • 14. Buytoz, S., et al., Microstructure Analysis and Thermal Characteristics of NiTiHf Shape Memory Alloy with Different Composition. Metals and Materials International, 2019.
  • 15. Dagdelen, F., et al., Influence of Ni addition and heat treatment on phase transformation temperatures and microstructures of a ternary CuAlCr alloy. The European Physical Journal Plus, 2019. 134(2): p. 66.
  • 16. Kök, M., et al., Effects of heat treatment temperatures on phase transformation, thermodynamical parameters, crystal microstructure, and electrical resistivity of NiTiV shape memory alloy. Journal of Thermal Analysis and Calorimetry, 2020. 139(6): p. 3405-3413.
  • 17. Ercan, E., F. Dagdelen, and I.N. Qader, Effect of tantalum contents on transformation temperatures, thermal behaviors and microstructure of CuAlTa HTSMAs. Journal of Thermal Analysis and Calorimetry, 2020. 139(1): p. 29-36.
  • 18. Dagdelen, F., M. Kok, and I.N. Qader, Effects of Ta Content on Thermodynamic Properties and Transformation Temperatures of Shape Memory NiTi Alloy. Metals and Materials International, 2019. 25(6): p. 1420-1427.
  • 19. Kök, M., et al., The effects of cobalt elements addition on Ti2Ni phases, thermodynamics parameters, crystal structure and transformation temperature of NiTi shape memory alloys. The European Physical Journal Plus, 2019. 134(5): p. 197.
  • 20. Acar, E., M. Kok, and I.N. Qader, Exploring surface oxidation behavior of NiTi–V alloys. The European Physical Journal Plus, 2020. 135(1): p. 58.
  • 21. Qader, I.N., M. Kök, and F. Dağdelen, Effect of heat treatment on thermodynamics parameters, crystal and microstructure of (Cu-Al-Ni-Hf) shape memory alloy. Physica B: Condensed Matter, 2019. 553: p. 1-5.
  • 22. Zafar, M.S., et al., 2 - Properties of dental biomaterials, in Advanced Dental Biomaterials, Z. Khurshid, et al., Editors. 2019, Woodhead Publishing. p. 7-35.
  • 23. Jin, S., et al., Influence of TiN coating on the biocompatibility of medical NiTi alloy. Colloids and Surfaces B: Biointerfaces, 2013. 101: p. 343-349.
  • 24. Zhang, L., et al., Graphene enhanced anti-corrosion and biocompatibility of NiTi alloy. NanoImpact, 2017. 7: p. 7-14.
  • 25. Tao, H., et al., In vitro biocompatibility of titanium-nickel alloy with titanium oxide film by H2O2 oxidation. Transactions of Nonferrous Metals Society of China, 2007. 17(3): p. 553-557.
  • 26. Lagoudas, D.C., Shape memory alloys: modeling and engineering applications. 2008: Springer.
  • 27. Jani, J.M., et al., A review of shape memory alloy research, applications and opportunities. Materials & Design (1980-2015), 2014. 56: p. 1078-1113.
  • 28. Hu, J.W. and M.-H. Noh, Seismic response and evaluation of SDOF self-centering friction damping braces subjected to several earthquake ground motions. Advances in Materials Science and Engineering, 2015. 2015.
  • 29. Biesiekierski, A., et al., A new look at biomedical Ti-based shape memory alloys. Acta Biomaterialia, 2012. 8(5): p. 1661-1669.
  • 30. Hayes, R.B., The carcinogenicity of metals in humans. Cancer Causes & Control, 1997. 8(3): p. 371-385.
  • 31. Hayashi, Y., Overview of genotoxic carcinogens and non-genotoxic carcinogens. Experimental and Toxicologic Pathology, 1992. 44(8): p. 465-471.
  • 32. Das, S., et al., Chapter 25 - Causes of cancer: physical, chemical, biological carcinogens, and viruses, in Biomaterials for 3D Tumor Modeling, S.C. Kundu and R.L. Reis, Editors. 2020, Elsevier. p. 607-641.
  • 33. El Abedin, S.Z., U. Welz-Biermann, and F. Endres, A study on the electrodeposition of tantalum on NiTi alloy in an ionic liquid and corrosion behaviour of the coated alloy. Electrochemistry communications, 2005. 7(9): p. 941-946.
  • 34. YAN, X.-j., D.-z. YANG, and X.-p. LIU, Electrochemical behavior of YAG laser-welded NiTi shape memory alloy. Transactions of Nonferrous Metals Society of China, 2006. 16(3): p. 572-576.
  • 35. Villermaux, F., et al., Excimer laser treatment of NiTi shape memory alloy biomaterials. Applied surface science, 1997. 109: p. 62-66.
  • 36. Tan, L., R. Dodd, and W. Crone, Corrosion and wear-corrosion behavior of NiTi modified by plasma source ion implantation. Biomaterials, 2003. 24(22): p. 3931-3939.
  • 37. Sun, F., et al., Surface modifications of Nitinol for biomedical applications. Colloids and Surfaces B: Biointerfaces, 2008. 67(1): p. 132-139.
  • 38. O’Brien, B., W. Carroll, and M. Kelly, Passivation of nitinol wire for vascular implants—a demonstration of the benefits. Biomaterials, 2002. 23(8): p. 1739-1748.
  • 39. Kurelec, B., The genotoxic disease syndrome. Marine Environmental Research, 1993. 35(4): p. 341-348.
  • 40. Martin-Camean, A., et al., In vitro and in vivo evidence of the cytotoxic and genotoxic effects of metal ions released by orthodontic appliances: A review. Environmental toxicology and pharmacology, 2015. 40(1): p. 86-113.
  • 41. Assad, M., et al., Comparative in vitro biocompatibility of nickel‐titanium, pure nickel, pure titanium, and stainless steel: genotoxicity and atomic absorption evaluation. Bio-medical materials and engineering, 1999. 9(1): p. 1-12.
  • 42. Andersen, M.H., et al., Cytotoxic T cells. Journal of Investigative Dermatology, 2006. 126(1): p. 32-41.
  • 43. Riss, T.L., R.A. Moravec, and A.L. Niles, Cytotoxicity Testing: Measuring Viable Cells, Dead Cells, and Detecting Mechanism of Cell Death, in Mammalian Cell Viability: Methods and Protocols, M.J. Stoddart, Editor. 2011, Humana Press: Totowa, NJ. p. 103-114.
  • 44. Tabish, T., et al., In vivo cytotoxic evaluation of Ti–Ni–Fe shape memory alloys. Materials Technology, 2014. 29(3): p. 139-143.
  • 45. Ariza, M.E. and M.V. Williams, Mutagenesis of AS52 cells by low concentrations of lead (II) and mercury (II). Environmental and molecular mutagenesis, 1996. 27(1): p. 30-33.
  • 46. Singer, B. and D. Grunberger, Molecular biology of mutagens and carcinogens. 2012: Springer Science & Business Media.
  • 47. Adler, I.D., Spermatogenesis and mutagenicity of environmental hazards: extrapolation of genetic risk from mouse to man. Andrologia, 2000. 32(4‐5): p. 233-237.
  • 48. Joshi, N., A. Ravindran, and V. Mahajan, Investigations on chemical mutagen sensitivity in onion (Allium cepa L.). International Journal of Botany, 2011. 7(3): p. 243-248.
  • 49. Christie, N.T. and D.M. Tummolo, The effect of Ni (II) on DNA replication. Biological trace element research, 1989. 21(1): p. 3-12.
  • 50. Campbell, A., et al., Overview of Allergic Mechanisms. Drugs, 1996. 52(1): p. 15-19.
  • 51. Wiltshire, W.A., M.R. Ferreira, and A.J. Ligthelm, Allergies to dental materials. Quintessence International-English Edition, 1996. 27: p. 513-520.
  • 52. Baer, H., Allergic contact dermatitis from plants. Handbook of Natural Toxins: Plant and Fungal Toxins, 1983. 1: p. 421-442.
  • 53. Burrows, D., Hypersensitivity to mercury, nickel and chromium in relation to dental materials. International dental journal, 1986. 36(1): p. 30-34.
  • 54. Jones, T.K., et al., Dental implications of nickel hypersensitivity. The Journal of prosthetic dentistry, 1986. 56(4): p. 507-509.
  • 55. Al-Waheidi, E., Allergic reaction to nickel orthodontic wires: a case report. Quintessence International, 1995. 26(6).
  • 56. Rahilly, G. and N. Price, Nickel allergy and orthodontics. Journal of orthodontics, 2003. 30(2): p. 171-174.
  • 57. Kim, H. and J.W. Johnson, Corrosion of stainless steel, nickel-titanium, coated nickel-titanium, and titanium orthodontic wires. The Angle Orthodontist, 1999. 69(1): p. 39-44.
  • 58. Novikova, G., Introduction to corrosion of bioimplants. Protection of Metals and Physical Chemistry of Surfaces, 2011. 47(3): p. 372-380.
  • 59. Manivasagam, G., D. Dhinasekaran, and A. Rajamanickam, Biomedical implants: corrosion and its prevention-a review. Recent patents on corrosion science, 2010.
  • 60. Jean, R.-D. and J.-B. Duh, The thermal cycling effect on Ti-Ni-Cu shape memory alloy. Scripta metallurgica et materialia, 1995. 32(6).
  • 61. Ruiz, J., et al., Effect of B on the corrosion resistance of a Ni-Ti alloy in simulated human body solution. International Journal of Electrochemical Science, 2010. 5(4): p. 593-604.
  • 62. Iijima, M., et al., Corrosion behavior and surface structure of orthodontic Ni-Ti alloy wires. Dental materials journal, 2001. 20(1): p. 103-113.
  • 63. Yan, S., et al., A state-of-the-art review on passivation and biofouling of Ti and its alloys in marine environments. Journal of Materials Science & Technology, 2018. 34(3): p. 421-435.
  • 64. Dutta, R.S., et al., Biocompatibility of Ni–Ti shape memory alloy. British Corrosion Journal, 1993. 28(3): p. 217-221.
  • 65. Sato, N. and G. Okamoto, Electrochemical Passivation of Metals, in Electrochemical Materials Science, J.O.M. Bockris, et al., Editors. 1981, Springer US: Boston, MA. p. 193-245.
  • 66. Simka, W., et al., Electropolishing and passivation of NiTi shape memory alloy. Electrochimica Acta, 2010. 55(7): p. 2437-2441.
  • 67. Barison, S., et al., Characterisation of surface oxidation of nickel–titanium alloy by ion-beam and electrochemical techniques. Electrochimica Acta, 2004. 50(1): p. 11-18.
  • 68. Chu, C.L., et al., Surface structure and biomedical properties of chemically polished and electropolished NiTi shape memory alloys. Materials Science and Engineering: C, 2008. 28(8): p. 1430-1434.
There are 68 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Review
Authors

Safar Mohammed 0000-0002-2794-8024

Mediha Kök 0000-0001-7404-4311

Ibrahim Nazem Qader 0000-0003-1167-3799

Meltem Coşkun 0000-0003-4971-4963

Publication Date December 31, 2021
Submission Date June 25, 2021
Published in Issue Year 2021

Cite

APA Mohammed, S., Kök, M., Qader, I. N., Coşkun, M. (2021). A Review Study on Biocompatible Improvements of NiTi-based Shape Memory Alloys. International Journal of Innovative Engineering Applications, 5(2), 125-130. https://doi.org/10.46460/ijiea.957722
AMA Mohammed S, Kök M, Qader IN, Coşkun M. A Review Study on Biocompatible Improvements of NiTi-based Shape Memory Alloys. ijiea, IJIEA. December 2021;5(2):125-130. doi:10.46460/ijiea.957722
Chicago Mohammed, Safar, Mediha Kök, Ibrahim Nazem Qader, and Meltem Coşkun. “A Review Study on Biocompatible Improvements of NiTi-Based Shape Memory Alloys”. International Journal of Innovative Engineering Applications 5, no. 2 (December 2021): 125-30. https://doi.org/10.46460/ijiea.957722.
EndNote Mohammed S, Kök M, Qader IN, Coşkun M (December 1, 2021) A Review Study on Biocompatible Improvements of NiTi-based Shape Memory Alloys. International Journal of Innovative Engineering Applications 5 2 125–130.
IEEE S. Mohammed, M. Kök, I. N. Qader, and M. Coşkun, “A Review Study on Biocompatible Improvements of NiTi-based Shape Memory Alloys”, ijiea, IJIEA, vol. 5, no. 2, pp. 125–130, 2021, doi: 10.46460/ijiea.957722.
ISNAD Mohammed, Safar et al. “A Review Study on Biocompatible Improvements of NiTi-Based Shape Memory Alloys”. International Journal of Innovative Engineering Applications 5/2 (December 2021), 125-130. https://doi.org/10.46460/ijiea.957722.
JAMA Mohammed S, Kök M, Qader IN, Coşkun M. A Review Study on Biocompatible Improvements of NiTi-based Shape Memory Alloys. ijiea, IJIEA. 2021;5:125–130.
MLA Mohammed, Safar et al. “A Review Study on Biocompatible Improvements of NiTi-Based Shape Memory Alloys”. International Journal of Innovative Engineering Applications, vol. 5, no. 2, 2021, pp. 125-30, doi:10.46460/ijiea.957722.
Vancouver Mohammed S, Kök M, Qader IN, Coşkun M. A Review Study on Biocompatible Improvements of NiTi-based Shape Memory Alloys. ijiea, IJIEA. 2021;5(2):125-30.