Research Article
BibTex RIS Cite

NiO Takviyeli Mn Katkılı Hidroksiapatit Kompozitlerinin Sentez ve Karakterizasyonu

Year 2022, , 48 - 54, 28.06.2022
https://doi.org/10.46460/ijiea.993624

Abstract

Bu çalışmada hidrotermal yöntemle sentezlenen mangan (Mn) katkılı hidroksiapatit (HAp) ile yaş kimyasal metot ile üretilen nikel oksit (NiO) kullanılarak oluşturulan kompozit numuneler karakterize edildi. NiO takviyesinin, Mn katkılı HAp’in kristalleşmesi, örgü parametreleri ve ortalama kristal büyüklüğü üzerine etkili olduğu görüldü. NiO ilavesi ile Mn katkılı HAp’inin bazı özelliklerinin değiştirilebilmesinin ve kontrol edilebilmesinin mümkün olabileceği gözlendi.

Supporting Institution

Fırat Üniversitesi Bilimsel Araştırma Projeleri (FÜBAP) Birimi

Project Number

FF.21.19

Thanks

Bu çalışma Fırat Üniversitesi Bilimsel Araştırma Projeleri (FÜBAP) Birimi FF.21.19 No’lu Proje kapsamında desteklenmiştir.

References

  • [1] Makarova, S., Bulina, N., Chaikina, M., Prosanov, L. Y., & Khusnutdinov, V. R. (2020). Mechanochemical Synthesis of Carbonate- and Fluoride-Substituted Hydroxyapatite. Chemistry for Sustainable Development, 28(1), 49-54.
  • [2] Akpan, E., Dauda, M., Kuburi, L., & Obada, D. (2021). Box-Behnken experimental design for the process optimization of catfish bones derived hydroxyapatite: A pedagogical approach. Materials Chemistry And Physics, 272, 124916.
  • [3] Collins Arun Prakash, V., Venda, I., & Thamizharasi, V. (2021). Synthesis and characterization of surfactant assisted hydroxyapatite powder using microemulsion method. Materials Today: Proceedings. doi: 10.1016/j.matpr.2021.05.059
  • [4] Jouda, N., & Fadhel Essa, A. (2021). Preparation and study of the structural, physical and mechanical properties of hydroxyapatite nanocomposite. Materials Today: Proceedings. doi: 10.1016/j.matpr.2021.04.550
  • [5] Kribaa, O., Latif, s., Saifi, F., & Chahbaoui, N. (2021). Elaboration and chemical characterization of a composite material based on hydroxyapatite / polyethylene. Materials Today: Proceedings. doi: 10.1016/j.matpr.2021.08.120
  • [6] Mohd Pu'ad, N., Abdul Haq, R., Mohd Noh, H., Abdullah, H., Idris, M., & Lee, T. (2020). Synthesis method of hydroxyapatite: A review. Materials Today: Proceedings, 29, 233-239. doi: 10.1016/j.matpr.2020.05.536
  • [7] Ezerskyte-Miseviciene, A., & Kareiva, A. (2019). Everything old is new again: a reinspection of solid-state method for the fabrication of high quality calcium hydroxyapatite bioceramics. Mendeleev Communications, 29(3), 273-275.
  • [8] Guesmi, Y., Agougui, H., Lafi, R., Jabli, M., & Hafiane, A. (2018). Synthesis of hydroxyapatite-sodium alginate via a co-precipitation technique for efficient adsorption of Methylene Blue dye. Journal Of Molecular Liquids, 249, 912-920.
  • [9] Pham, V., Van, H., Tam, P., & Ha, H. (2016). A novel 1540nm light emission from erbium doped hydroxyapatite/β-tricalcium phosphate through co-precipitation method. Materials Letters, 167, 145-147.
  • [10] Nosrati, H., Sarraf-Mamoory, R., Canillas Perez, M., Le, D., Zolfaghari Emameh, R., & Bünger, C. (2021). Characteristics of hydroxyapatite-reduced graphene oxide composite powders synthesized via hydrothermal method in the absence and presence of diethylene glycol. Open Ceramics, 5, 100067.
  • [11] Sadetskaya, A., Bobrysheva, N., Osmolowsky, M., Osmolovskaya, O., & Voznesenskiy, M. (2021). Correlative experimental and theoretical characterization of transition metal doped hydroxyapatite nanoparticles fabricated by hydrothermal method. Materials Characterization, 173, 110911.
  • [12] Khvostov, M., Borisova, M., Bulina, N., Makarova, S., Dumchenko, N., Tolstikova, T., & Lyakhov, N. (2021). The influence of zinc and silicate ions on biological properties of hydroxyapatite synthesized by a mechanochemical method. Ceramics International, 47(7), 9495-9503.
  • [13] Bulina, N., Chaikina, M., Makarova, S., & Dudina, D. (2019). Characterization of Sr-substituted hydroxyapatite synthesized by the mechanochemical method. Materials Today: Proceedings, 12, 57-60.
  • [14] Jakab, M., Enisz-Bódogh, M., Makó, É., Kovács, K., Orbán, S., & Horváth, B. (2020). Influence of wet chemical processing conditions on structure and properties of magnetic hydroxyapatite nanocomposites. Processing And Application Of Ceramics, 14(4), 321-328.
  • [15] Goh, K., Wong, Y., Ramesh, S., Chandran, H., Krishnasamy, S., & Ramesh, S. et al. (2021). Effect of pH on the properties of eggshell-derived hydroxyapatite bioceramic synthesized by wet chemical method assisted by microwave irradiation. Ceramics International, 47(7), 8879-8887.
  • [16] Saranya, S., & Prema Rani, M. (2021). Sol gel synthesis of Niobium influence on Hydroxyapatite: A view of invitro, structural, morphological and studies for Biomedical Applications. Materials Today: Proceedings, 46, 1441-1450.
  • [17] Jang, J., Oh, B., & Lee, E. (2021). Crystalline hydroxyapatite/graphene oxide complex by low-temperature sol-gel synthesis and its characterization. Ceramics International, 47(19), 27677-27684.
  • [18] Jiang, J., Long, Y., Hu, X., Hu, J., Zhu, M., & Zhou, S. (2020). A facile microwave-assisted synthesis of mesoporous hydroxyapatite as an efficient adsorbent for Pb2+ adsorption. Journal Of Solid State Chemistry, 289, 121491.
  • [19] Sözügeçer, S., & Bayramgil, N. (2021). Preparation and characterization of polyacrylic acid-hydroxyapatite nanocomposite by microwave-assisted synthesis method. Heliyon, 7(6), e07226.
  • [20] Indira, J., & Malathi, K. (2021). Comparison of template mediated ultrasonic and microwave irradiation method on the synthesis of hydroxyapatite nanoparticles for biomedical applications. Materials Today: Proceedings. doi: 10.1016/j.matpr.2021.03.028
  • [21] Shih, W., Chen, Y., Wang, M., & Hon, M. (2004). Crystal growth and morphology of the nano-sized hydroxyapatite powders synthesized from CaHPO4·2H2O and CaCO3 by hydrolysis method. Journal Of Crystal Growth, 270(1-2), 211-218.
  • [22] Shih, W., Wang, J., Wang, M., & Hon, M. (2006). A study on the phase transformation of the nanosized hydroxyapatite synthesized by hydrolysis using in situ high temperature X-ray diffraction. Materials Science And Engineering: C, 26(8), 1434-1438.
  • [23] Kaygili, O., Keser, S., Bulut, N., & Ates, T. (2018). Characterization of Mg-containing hydroxyapatites synthesized by combustion method. Physica B: Condensed Matter, 537, 63-67.
  • [24] Obada, D., Salami, K., Oyedeji, A., Fasanya, O., Suleiman, M., & Ibisola, B. et al. (2021). Solution combustion synthesis of strontium-doped hydroxyapatite: Effect of sintering and low compaction pressure on the mechanical properties and physiological stability. Materials Letters, 304, 130613.
  • [25] Cho, J., & Rhee, S. (2013). Formation mechanism of nano-sized hydroxyapatite powders through spray pyrolysis of a calcium phosphate solution containing polyethylene glycol. Journal Of The European Ceramic Society, 33(2), 233-241.
  • [26] Lo, Y., Chang, C., Lin, P., Lin, S., & Wang, C. (2021). Direct growth of structurally controllable hydroxyapatite coating on Ti-6Al-4V through a rapid hydrothermal synthesis. Applied Surface Science, 556, 149672.
  • [27] Jose, S., Senthilkumar, M., Elayaraja, K., Haris, M., George, A., & Raj, A. et al. (2021). Preparation and characterization of Fe doped n-hydroxyapatite for biomedical application. Surfaces And Interfaces, 25, 101185.
  • [28] Yuan, S., Qi, X., Zhang, H., Yuan, L., & Huang, J. (2021). Doping gadolinium versus lanthanum into hydroxyapatite particles for better biocompatibility in bone marrow stem cells. Chemico-Biological Interactions, 346, 109579.
  • [29] Febrian, M., Mahendra, I., Kurniawan, A., Setiadi, Y., Ambar Wibawa, T., Lesmana, R., & Syarif, D. (2021). Zirconium doped hydroxyapatite nanoparticle as a potential design for lung cancer therapy. Ceramics International, 47(19), 27890-27897.
  • [30] Fan, Q., Fan, F., Xu, W., Zhang, H., & Liu, N. (2021). The structural and surface properties of Al-doped hydroxyapatite (Ca5(PO4)3OH) nanorods and their applications for pH-induced drug delivery. Journal Of Alloys And Compounds, 879, 160414.
  • [31] Citradewi, P., Hidayat, H., Purwiandono, G., Fatimah, I., & Sagadevan, S. (2021). Clitorea ternatea-mediated silver nanoparticle-doped hydroxyapatite derived from cockle shell as antibacterial material. Chemical Physics Letters, 769, 138412.
  • [32] Iqbal, S., Younas, M., ul Hassan, M., Ryu, H., Anjum, M., & Farhan, M. et al. (2021). Electronic, electrical and dielectric analysis of Cr-doped hydroxyapatite. Chemical Physics Letters, 771, 138507.
  • [33] Kandori, K., Murata, R., Yamaguchi, Y., & Yoshioka, A. (2018). Protein adsorption behaviors onto Mn(II)-doped calcium hydroxyapatite particles with different morphologies. Colloids And Surfaces B: Biointerfaces, 167, 36-43.
  • [34] Karunakaran, G., Cho, E., Thirumurugan, K., Kumar, G., Kolesnikov, E., & Boobalan, S. et al. (2021). Mesoporous Mn-doped hydroxyapatite nanorods obtained via pyridinium chloride enabled microwave-assisted synthesis by utilizing Donax variabilis seashells for implant applications. Materials Science And Engineering: C, 126, 112170.
  • [35] Muthuselvi, S., Saranya, S., & Prema Rani, M. (2017). Characterization Of Ni Doped Hydroxyapatite Nanopowders Synthesized By Sol Gel Method. International Conference on Nanotechnology: The Fruition of Science (pp. 107-114).
  • [36] Kurinjinathan, P., Thanigai Arul, K., Ramana Ramya, J., Manikandan, E., Hegazy, H., & Umar, A. et al. (2020). Effect of Nickel Doping on the Properties of Hydroxyapatite Nanoparticles. Journal Of Nanoscience And Nanotechnology, 20(4), 2482-2487.
  • [37] Cullity, B.D. Elements of X-ray Diffraction. 2nd ed. Addison–Wesley Publishing Company, Massachusetts; 1978.
  • [38] Landi, E., Tampieri, A., Celotti, G., & Sprio, S. (2000). Densification behaviour and mechanisms of synthetic hydroxyapatites, Journal of the European Ceramic Society, 20, 2377-2387.
  • [39] Kayğılı, Ö. (2011). Sol Jel Metodu ile Üretilen Hidroksiapatit Esaslı Biyoseramik Malzemelerin Mikroyapı ve Fiziksel Özelliklerinin İncelenmesi. Doktora Tezi, Fırat Üniversitesi, Elazığ, Türkiye.
  • [40] Ibrahimzade, L., Kaygili, O., Dundar, S., Ates, T., Dorozhkin, S., & Bulut, N. et al. (2021). Theoretical and experimental characterization of Pr/Ce co-doped hydroxyapatites. Journal Of Molecular Structure, 1240, 130557.
  • [41] Kaygili, O., Vural, G., Keser, S., Yahia, I., Bulut, N., & Ates, T. et al. (2020). Ce/Sm co-doped hydroxyapatites: synthesis, characterization, and band structure calculation. Journal Of The Australian Ceramic Society, 57(1), 305-317.
  • [42] Mahmood, B., Kaygili, O., Bulut, N., Dorozhkin, S., Ates, T., & Koytepe, S. et al. (2020). Effects of strontium - erbium co-doping on the structural properties of hydroxyapatite: An Experimental and theoretical study. Ceramics International, 46(10), 16354-16363.
  • [43] İnce, T., Kaygili, O., Tatar, C., Bulut, N., Koytepe, S., & Ates, T. (2018). The effects of Ni-addition on the crystal structure, thermal properties and morphology of Mg-based hydroxyapatites synthesized by a wet chemical method. Ceramics International, 44(12), 14036-14043.
  • [44] Kaygili, O., Keser, S., Selçuk, A., Bulut, N., Koytepe, S., Yahia, I., & Ates, T. (2019). The effects of gamma irradiation on dielectric properties of Ag/Gd co-doped hydroxyapatites. Journal Of Materials Science: Materials In Electronics, 30(11), 10443-10453.

Synthesis and Characterization of NiO Reinforced Mn Based Hydroxyapatite Composites

Year 2022, , 48 - 54, 28.06.2022
https://doi.org/10.46460/ijiea.993624

Abstract

In this study, the composite samples formed by using manganese (Mn) based hydroxyapatite (HAp) synthesized by hydrothermal method and nickel oxide (NiO) produced by the wet chemical method were characterized. NiO reinforcement was found to be effective on crystallization, lattice parameters, and average crystal size of Mn-doped HAp. It was observed that it can possible to change and control some properties of Mn-doped HAp with the addition of NiO.

Project Number

FF.21.19

References

  • [1] Makarova, S., Bulina, N., Chaikina, M., Prosanov, L. Y., & Khusnutdinov, V. R. (2020). Mechanochemical Synthesis of Carbonate- and Fluoride-Substituted Hydroxyapatite. Chemistry for Sustainable Development, 28(1), 49-54.
  • [2] Akpan, E., Dauda, M., Kuburi, L., & Obada, D. (2021). Box-Behnken experimental design for the process optimization of catfish bones derived hydroxyapatite: A pedagogical approach. Materials Chemistry And Physics, 272, 124916.
  • [3] Collins Arun Prakash, V., Venda, I., & Thamizharasi, V. (2021). Synthesis and characterization of surfactant assisted hydroxyapatite powder using microemulsion method. Materials Today: Proceedings. doi: 10.1016/j.matpr.2021.05.059
  • [4] Jouda, N., & Fadhel Essa, A. (2021). Preparation and study of the structural, physical and mechanical properties of hydroxyapatite nanocomposite. Materials Today: Proceedings. doi: 10.1016/j.matpr.2021.04.550
  • [5] Kribaa, O., Latif, s., Saifi, F., & Chahbaoui, N. (2021). Elaboration and chemical characterization of a composite material based on hydroxyapatite / polyethylene. Materials Today: Proceedings. doi: 10.1016/j.matpr.2021.08.120
  • [6] Mohd Pu'ad, N., Abdul Haq, R., Mohd Noh, H., Abdullah, H., Idris, M., & Lee, T. (2020). Synthesis method of hydroxyapatite: A review. Materials Today: Proceedings, 29, 233-239. doi: 10.1016/j.matpr.2020.05.536
  • [7] Ezerskyte-Miseviciene, A., & Kareiva, A. (2019). Everything old is new again: a reinspection of solid-state method for the fabrication of high quality calcium hydroxyapatite bioceramics. Mendeleev Communications, 29(3), 273-275.
  • [8] Guesmi, Y., Agougui, H., Lafi, R., Jabli, M., & Hafiane, A. (2018). Synthesis of hydroxyapatite-sodium alginate via a co-precipitation technique for efficient adsorption of Methylene Blue dye. Journal Of Molecular Liquids, 249, 912-920.
  • [9] Pham, V., Van, H., Tam, P., & Ha, H. (2016). A novel 1540nm light emission from erbium doped hydroxyapatite/β-tricalcium phosphate through co-precipitation method. Materials Letters, 167, 145-147.
  • [10] Nosrati, H., Sarraf-Mamoory, R., Canillas Perez, M., Le, D., Zolfaghari Emameh, R., & Bünger, C. (2021). Characteristics of hydroxyapatite-reduced graphene oxide composite powders synthesized via hydrothermal method in the absence and presence of diethylene glycol. Open Ceramics, 5, 100067.
  • [11] Sadetskaya, A., Bobrysheva, N., Osmolowsky, M., Osmolovskaya, O., & Voznesenskiy, M. (2021). Correlative experimental and theoretical characterization of transition metal doped hydroxyapatite nanoparticles fabricated by hydrothermal method. Materials Characterization, 173, 110911.
  • [12] Khvostov, M., Borisova, M., Bulina, N., Makarova, S., Dumchenko, N., Tolstikova, T., & Lyakhov, N. (2021). The influence of zinc and silicate ions on biological properties of hydroxyapatite synthesized by a mechanochemical method. Ceramics International, 47(7), 9495-9503.
  • [13] Bulina, N., Chaikina, M., Makarova, S., & Dudina, D. (2019). Characterization of Sr-substituted hydroxyapatite synthesized by the mechanochemical method. Materials Today: Proceedings, 12, 57-60.
  • [14] Jakab, M., Enisz-Bódogh, M., Makó, É., Kovács, K., Orbán, S., & Horváth, B. (2020). Influence of wet chemical processing conditions on structure and properties of magnetic hydroxyapatite nanocomposites. Processing And Application Of Ceramics, 14(4), 321-328.
  • [15] Goh, K., Wong, Y., Ramesh, S., Chandran, H., Krishnasamy, S., & Ramesh, S. et al. (2021). Effect of pH on the properties of eggshell-derived hydroxyapatite bioceramic synthesized by wet chemical method assisted by microwave irradiation. Ceramics International, 47(7), 8879-8887.
  • [16] Saranya, S., & Prema Rani, M. (2021). Sol gel synthesis of Niobium influence on Hydroxyapatite: A view of invitro, structural, morphological and studies for Biomedical Applications. Materials Today: Proceedings, 46, 1441-1450.
  • [17] Jang, J., Oh, B., & Lee, E. (2021). Crystalline hydroxyapatite/graphene oxide complex by low-temperature sol-gel synthesis and its characterization. Ceramics International, 47(19), 27677-27684.
  • [18] Jiang, J., Long, Y., Hu, X., Hu, J., Zhu, M., & Zhou, S. (2020). A facile microwave-assisted synthesis of mesoporous hydroxyapatite as an efficient adsorbent for Pb2+ adsorption. Journal Of Solid State Chemistry, 289, 121491.
  • [19] Sözügeçer, S., & Bayramgil, N. (2021). Preparation and characterization of polyacrylic acid-hydroxyapatite nanocomposite by microwave-assisted synthesis method. Heliyon, 7(6), e07226.
  • [20] Indira, J., & Malathi, K. (2021). Comparison of template mediated ultrasonic and microwave irradiation method on the synthesis of hydroxyapatite nanoparticles for biomedical applications. Materials Today: Proceedings. doi: 10.1016/j.matpr.2021.03.028
  • [21] Shih, W., Chen, Y., Wang, M., & Hon, M. (2004). Crystal growth and morphology of the nano-sized hydroxyapatite powders synthesized from CaHPO4·2H2O and CaCO3 by hydrolysis method. Journal Of Crystal Growth, 270(1-2), 211-218.
  • [22] Shih, W., Wang, J., Wang, M., & Hon, M. (2006). A study on the phase transformation of the nanosized hydroxyapatite synthesized by hydrolysis using in situ high temperature X-ray diffraction. Materials Science And Engineering: C, 26(8), 1434-1438.
  • [23] Kaygili, O., Keser, S., Bulut, N., & Ates, T. (2018). Characterization of Mg-containing hydroxyapatites synthesized by combustion method. Physica B: Condensed Matter, 537, 63-67.
  • [24] Obada, D., Salami, K., Oyedeji, A., Fasanya, O., Suleiman, M., & Ibisola, B. et al. (2021). Solution combustion synthesis of strontium-doped hydroxyapatite: Effect of sintering and low compaction pressure on the mechanical properties and physiological stability. Materials Letters, 304, 130613.
  • [25] Cho, J., & Rhee, S. (2013). Formation mechanism of nano-sized hydroxyapatite powders through spray pyrolysis of a calcium phosphate solution containing polyethylene glycol. Journal Of The European Ceramic Society, 33(2), 233-241.
  • [26] Lo, Y., Chang, C., Lin, P., Lin, S., & Wang, C. (2021). Direct growth of structurally controllable hydroxyapatite coating on Ti-6Al-4V through a rapid hydrothermal synthesis. Applied Surface Science, 556, 149672.
  • [27] Jose, S., Senthilkumar, M., Elayaraja, K., Haris, M., George, A., & Raj, A. et al. (2021). Preparation and characterization of Fe doped n-hydroxyapatite for biomedical application. Surfaces And Interfaces, 25, 101185.
  • [28] Yuan, S., Qi, X., Zhang, H., Yuan, L., & Huang, J. (2021). Doping gadolinium versus lanthanum into hydroxyapatite particles for better biocompatibility in bone marrow stem cells. Chemico-Biological Interactions, 346, 109579.
  • [29] Febrian, M., Mahendra, I., Kurniawan, A., Setiadi, Y., Ambar Wibawa, T., Lesmana, R., & Syarif, D. (2021). Zirconium doped hydroxyapatite nanoparticle as a potential design for lung cancer therapy. Ceramics International, 47(19), 27890-27897.
  • [30] Fan, Q., Fan, F., Xu, W., Zhang, H., & Liu, N. (2021). The structural and surface properties of Al-doped hydroxyapatite (Ca5(PO4)3OH) nanorods and their applications for pH-induced drug delivery. Journal Of Alloys And Compounds, 879, 160414.
  • [31] Citradewi, P., Hidayat, H., Purwiandono, G., Fatimah, I., & Sagadevan, S. (2021). Clitorea ternatea-mediated silver nanoparticle-doped hydroxyapatite derived from cockle shell as antibacterial material. Chemical Physics Letters, 769, 138412.
  • [32] Iqbal, S., Younas, M., ul Hassan, M., Ryu, H., Anjum, M., & Farhan, M. et al. (2021). Electronic, electrical and dielectric analysis of Cr-doped hydroxyapatite. Chemical Physics Letters, 771, 138507.
  • [33] Kandori, K., Murata, R., Yamaguchi, Y., & Yoshioka, A. (2018). Protein adsorption behaviors onto Mn(II)-doped calcium hydroxyapatite particles with different morphologies. Colloids And Surfaces B: Biointerfaces, 167, 36-43.
  • [34] Karunakaran, G., Cho, E., Thirumurugan, K., Kumar, G., Kolesnikov, E., & Boobalan, S. et al. (2021). Mesoporous Mn-doped hydroxyapatite nanorods obtained via pyridinium chloride enabled microwave-assisted synthesis by utilizing Donax variabilis seashells for implant applications. Materials Science And Engineering: C, 126, 112170.
  • [35] Muthuselvi, S., Saranya, S., & Prema Rani, M. (2017). Characterization Of Ni Doped Hydroxyapatite Nanopowders Synthesized By Sol Gel Method. International Conference on Nanotechnology: The Fruition of Science (pp. 107-114).
  • [36] Kurinjinathan, P., Thanigai Arul, K., Ramana Ramya, J., Manikandan, E., Hegazy, H., & Umar, A. et al. (2020). Effect of Nickel Doping on the Properties of Hydroxyapatite Nanoparticles. Journal Of Nanoscience And Nanotechnology, 20(4), 2482-2487.
  • [37] Cullity, B.D. Elements of X-ray Diffraction. 2nd ed. Addison–Wesley Publishing Company, Massachusetts; 1978.
  • [38] Landi, E., Tampieri, A., Celotti, G., & Sprio, S. (2000). Densification behaviour and mechanisms of synthetic hydroxyapatites, Journal of the European Ceramic Society, 20, 2377-2387.
  • [39] Kayğılı, Ö. (2011). Sol Jel Metodu ile Üretilen Hidroksiapatit Esaslı Biyoseramik Malzemelerin Mikroyapı ve Fiziksel Özelliklerinin İncelenmesi. Doktora Tezi, Fırat Üniversitesi, Elazığ, Türkiye.
  • [40] Ibrahimzade, L., Kaygili, O., Dundar, S., Ates, T., Dorozhkin, S., & Bulut, N. et al. (2021). Theoretical and experimental characterization of Pr/Ce co-doped hydroxyapatites. Journal Of Molecular Structure, 1240, 130557.
  • [41] Kaygili, O., Vural, G., Keser, S., Yahia, I., Bulut, N., & Ates, T. et al. (2020). Ce/Sm co-doped hydroxyapatites: synthesis, characterization, and band structure calculation. Journal Of The Australian Ceramic Society, 57(1), 305-317.
  • [42] Mahmood, B., Kaygili, O., Bulut, N., Dorozhkin, S., Ates, T., & Koytepe, S. et al. (2020). Effects of strontium - erbium co-doping on the structural properties of hydroxyapatite: An Experimental and theoretical study. Ceramics International, 46(10), 16354-16363.
  • [43] İnce, T., Kaygili, O., Tatar, C., Bulut, N., Koytepe, S., & Ates, T. (2018). The effects of Ni-addition on the crystal structure, thermal properties and morphology of Mg-based hydroxyapatites synthesized by a wet chemical method. Ceramics International, 44(12), 14036-14043.
  • [44] Kaygili, O., Keser, S., Selçuk, A., Bulut, N., Koytepe, S., Yahia, I., & Ates, T. (2019). The effects of gamma irradiation on dielectric properties of Ag/Gd co-doped hydroxyapatites. Journal Of Materials Science: Materials In Electronics, 30(11), 10443-10453.
There are 44 citations in total.

Details

Primary Language Turkish
Subjects Engineering
Journal Section Articles
Authors

Tankut Ateş 0000-0002-4519-2953

Serhat Keser 0000-0002-9678-1053

Aydan Aksoğan Korkmaz 0000-0002-3309-9719

Niyazi Bulut 0000-0003-2863-7700

Omer Kaygili 0000-0002-2321-1455

Project Number FF.21.19
Publication Date June 28, 2022
Submission Date September 10, 2021
Published in Issue Year 2022

Cite

APA Ateş, T., Keser, S., Aksoğan Korkmaz, A., Bulut, N., et al. (2022). NiO Takviyeli Mn Katkılı Hidroksiapatit Kompozitlerinin Sentez ve Karakterizasyonu. International Journal of Innovative Engineering Applications, 6(1), 48-54. https://doi.org/10.46460/ijiea.993624
AMA Ateş T, Keser S, Aksoğan Korkmaz A, Bulut N, Kaygili O. NiO Takviyeli Mn Katkılı Hidroksiapatit Kompozitlerinin Sentez ve Karakterizasyonu. ijiea, IJIEA. June 2022;6(1):48-54. doi:10.46460/ijiea.993624
Chicago Ateş, Tankut, Serhat Keser, Aydan Aksoğan Korkmaz, Niyazi Bulut, and Omer Kaygili. “NiO Takviyeli Mn Katkılı Hidroksiapatit Kompozitlerinin Sentez Ve Karakterizasyonu”. International Journal of Innovative Engineering Applications 6, no. 1 (June 2022): 48-54. https://doi.org/10.46460/ijiea.993624.
EndNote Ateş T, Keser S, Aksoğan Korkmaz A, Bulut N, Kaygili O (June 1, 2022) NiO Takviyeli Mn Katkılı Hidroksiapatit Kompozitlerinin Sentez ve Karakterizasyonu. International Journal of Innovative Engineering Applications 6 1 48–54.
IEEE T. Ateş, S. Keser, A. Aksoğan Korkmaz, N. Bulut, and O. Kaygili, “NiO Takviyeli Mn Katkılı Hidroksiapatit Kompozitlerinin Sentez ve Karakterizasyonu”, ijiea, IJIEA, vol. 6, no. 1, pp. 48–54, 2022, doi: 10.46460/ijiea.993624.
ISNAD Ateş, Tankut et al. “NiO Takviyeli Mn Katkılı Hidroksiapatit Kompozitlerinin Sentez Ve Karakterizasyonu”. International Journal of Innovative Engineering Applications 6/1 (June 2022), 48-54. https://doi.org/10.46460/ijiea.993624.
JAMA Ateş T, Keser S, Aksoğan Korkmaz A, Bulut N, Kaygili O. NiO Takviyeli Mn Katkılı Hidroksiapatit Kompozitlerinin Sentez ve Karakterizasyonu. ijiea, IJIEA. 2022;6:48–54.
MLA Ateş, Tankut et al. “NiO Takviyeli Mn Katkılı Hidroksiapatit Kompozitlerinin Sentez Ve Karakterizasyonu”. International Journal of Innovative Engineering Applications, vol. 6, no. 1, 2022, pp. 48-54, doi:10.46460/ijiea.993624.
Vancouver Ateş T, Keser S, Aksoğan Korkmaz A, Bulut N, Kaygili O. NiO Takviyeli Mn Katkılı Hidroksiapatit Kompozitlerinin Sentez ve Karakterizasyonu. ijiea, IJIEA. 2022;6(1):48-54.