Review
BibTex RIS Cite

Enerji Simülasyon Araçları ile Binalarda Faz Değiştiren Malzeme Uygulamaları

Year 2020, Volume: 4 Issue: 2, 55 - 63, 25.12.2020
https://doi.org/10.46460/ijiea.807083

Abstract

Bu çalışmada, pasif iklimlendirme uygulamalarında kullanılan faz değiştiren malzemelerin farklı yapı bileşenlerinde ve farklı iklim koşullarında uygulanabilirliğini analiz eden bina enerji simülasyon araçları ve bu araçların kullanıldığı çalışmalar ele alınacaktır. Çalışma kapsamında faz değiştiren malzeme ve enerji simülasyon araçları kavramları incelenerek tarama modeline dayalı olarak seçilen örnekler farklı çevresel koşullara ve uygulanma detaylarına göre irdelenecektir. Çalışma son yıllarda yapılan deneysel araştırmaların enerji simülasyon araçlarıyla eşleştirilmesi gereğini vurgulayan bir derleme çalışmasıdır.

Supporting Institution

Dokuz Eylül Üniversitesi Bilimsel Araştırma Projeleri Koordinasyon Birimi

Project Number

2019.KB.FEN.020

Thanks

Bu çalışma Dokuz Eylül Üniversitesi Bilimsel Araştırma Projeleri Koordinasyon Birimi tarafından 2019.KB.FEN.020 nolu proje kapsamında desteklenmiştir.

References

  • Yılmazoğlu, M. Z., Isı Enerjisi Depolama Yöntemleri ve Binalarda Uygulanması, Politeknik Dergisi, 13,1, 33-42, 2010.
  • Konuklu, Y., Paksoy, H., Faz Değiştiren Maddeler ile Binalarda Enerji Verimliliği, 10. Ulusal Tesisat Mühendisliği Kongresi, 919-930, 2011.
  • Konuklu, Y., Ostry, M., Paksoy, H.O., Charvat, P., Review on Using Microencapsulated Phase Change Materials (PCM) in Building Applications, Energy Build., 106, 134– 155. 2015.
  • Zalba, B., Marin, J. M., Cabeza, L. F., Ve Mehling, H., Review on Thermal Energy Storage With Phase Change Materials, Heat Transfer Analysis and Applications, Applied Thermal Engineering, Vol.23, 251-283, 2003.
  • Mishra, A., Shukla, A., Sharma, A., Latent Heat Storage Through Phase Change Materials, Resonance, 532-541, 2015.
  • Casini, M., Smart Materials and Nanotechnology for Energy Retrofit of Historic Buildings, Journal of Advances in Civil, Structural and Construction Engineering, Csce, 1, 3, 88-97, 2014.
  • Hesaraki, A., Holmberg, S., Haghighat, F., Seasonal Thermal Energy Storage with Heat Pumps and Low Temperatures in Building Projects—A Comparative Review., Renew Sustain Energy Rev; 43:1199–213, 2015.
  • De Gracia, A., Cabeza, L.F., Phase Change Materials and Thermal Energy Storage for Buildings. Energy Build., 2015.
  • Salunkhe, P. B., Shembekar, P. S., A Review on Effect Of Phase Change Material Encapsulation on the Thermal Performance of a System Renew. Sustain. Energy Rev; 16, 5603–16, 2012.
  • Mahlia T.M.I, Saktisahdan T.J, Jannifar A.,Hasan M.H, Matseelar H.S C., A Review of Available Methods and Development on Energy Storage; Technology Update. Renew Sustain Energy Rev; 33:532–45, 2014.
  • Cabeza, L.F, Barreneche, C., Martorell, I., Miró, L., Sari- Bey, S., Fois, M., Unconventional Experimental Technologies Available for Phase Change Materials (PCM) Characterization. Part 1. Thermophysical Properties. Renew Sustain Energy Rev, 2014.
  • Kos´ny, J., PCM-Enhanced Building Components - An Application of Phase Change Materials in Building Envelopes and Internal Structures. Switzerland: Springer International Publishing, 2015.
  • Klein, S.A., TRNSYS 17: A Transient System Simulation Program, 2011. 〈http://www.trnsys.com/〉
  • Tokuç A., Bina Enerji Benzetim Araçları Ve Seçim Ölçütleri, Dokuz Eylül Mühendislik Bilimleri Dergisi, 5,3, 2009.
  • Li, G., Energy and Exergy Performance Assessments for Latent Heat Thermal Energy Storage Systems. Renew Sustain Energy Rev; 51, 926–54, 2015.
  • Kelly N.J., Towards A Design Environment for Building- Integrated Energy Systems: The İntegration of Electrical Power Flow Modelling with Building Simulation, Phd Thesis, Glasgow: University Of Strathclyde, UK, 1998.
  • Orhon, A. V., Altın, M., Mimari Sürdürülebilirlik için Bir Değerlendirme Aracı Olarak Benzetim, Tesisat Mühendisliği, 158, 5-13, 2017.
  • Ellis, P.G., Torcellini, P.A., Crawley, D.B.. Simulation of Energy Management Systems in Energyplus. Build Simul 2007,1346–53, 2007.
  • Crawley, B.D.B., Lawrie, L.K., Energyplus: Energy Simulation Program. ASHRAE, 42,49–56, 2000.
  • Crawley, D.B., Hand, J.W., Kummert, M., Griffith, B.T., Contrasting the Capabilities of Building Energy Performance Simulation Programs. Build. Environ. 43,661– 73, 2008.
  • Zöller, A., Jung, M., Schmidt, M., Brenner, T., Gatzka, B., Schossig, P., Haussmann, T. Abschlussbericht Zum Verbundforschungsvorhaben‚ Aktive Latentspeichersysteme Für Gebäude. Fraunhofer ISE, Gemeinsamer Bericht Aller Projektteilnehmer İn Den Teilprojekten 0327370G-K, 0327370S, 2008.
  • Schranzhofer, H., Puschnig, P., Heinz, A., Streicher, W., Validation of a TRNSYS Simulation Model for PCM Energy Storages and PCM Wall Construction Elements. In: Proceedings of ECOSTOCK 2006—10th International Conference on Thermal Energy Storage. Pomona, NJ, 2006.
  • Al-Saadi, S.N., Zhai, Z., Modeling Phase Change Materials Embedded in Building Enclosure: A Review. Renew Sustain Energy Rev, 21, 659–73, 2013.
  • Plytaria, M. T., Tzivanidis, C., Bellos, E., Alexopoulos, I., and Antonopoulos, K. A., Thermal Behavior of a Building with Incorporated Phase Change Materials in the South and The North Wall, Computation, 7,2, 2019.
  • Borderon, J., Virgone, J., and Cantin, R. (2015). Modeling and Simulation of a Phase Change Material System for Improving Summer Comfort in Domestic Residence. Applied Energy, 140, 288–296.
  • Ascione, F., Bianco, N., De Masi, R.F., De’ Rossi, F., Vanoli, G.P., Energy Refurbishment of Existing Buildings Through the Use of Phase Change Materials: Energy Savings and Indoor Comfort in The Cooling Season. Appl Energy, 113,990–1007,2014.
  • Chan, A.L.S., Energy and Environmental Performance of Building Facades Integrated with Phase Change Material in Subtropical Hong Kong. Energy Build., 43,2947-55, 2011.
  • Lei, J., Yang, J., Yang, E-H., Energy Performance of Building Envelopes Integrated with Phase Change Materials for Cooling Load Reduction in Tropical Singapore. Appl. Energy;162,207-17, 2016.
  • Nghaana, B., Tariku, F., Phase Change Material’s (PCM) Impacts on the Energy Performance and Thermal Comfort of Buildings in a Mild Climate. Building and Environment, 2016
  • Almeida, F., Zhang, D., Fung, A.S., Leong W. H., Investigation of Multilayered Phase-Change-Material Modeling in ESP-R, International High Performance Buildings Conference, 2010.
  • Kośny, J., Fallahi, A., Shukla, N., Kossecka, E., Ahbari, R., Thermal Load Mitigation and Passive Cooling in Residential Attics Containing PCM-Enhanced Insulations. Sol Energy 108,164-177, 2014.
  • Heim, D., Clarke, J.A., Numerical Modeling and Thermal Simulation of PCM–Gypsum Composites with ESP-R. Energy Build 36,795-805, 2004.
  • Almeida, F., Zhang, D., Fung, A.S., Leong W. H., Comparıson of Corrective Phase Change Material Algorithm With Esp-R Simulation, 12th Conference of International Building Performance Simulation Association, Sydney, 14-16 November, 2011.
  • Rodríguez -Ubiñas, E., Cronemberger, J., Vega Sánchez, S. and García-Santos, A. Performance of Passive Application of PCM in Spain, Researchgate, 2010.

Phase Change Material Applications on Buildings using Whole-Building Energy Simulation Tools

Year 2020, Volume: 4 Issue: 2, 55 - 63, 25.12.2020
https://doi.org/10.46460/ijiea.807083

Abstract

In this paper, building energy simulation tools that analyze the applicability of phase change materials used in passive air conditioning applications in different building components and in different climatic conditions and studies using these tools will be discussed. Within the scope of the study, the concepts of phase change materials and energy simulation tools will be examined and selected examples based on the scanning model will be examined according to different environmental conditions and application details. The study is a review that emphasizes the need to match the experimental researches conducted in recent years with energy simulation tools.

Project Number

2019.KB.FEN.020

References

  • Yılmazoğlu, M. Z., Isı Enerjisi Depolama Yöntemleri ve Binalarda Uygulanması, Politeknik Dergisi, 13,1, 33-42, 2010.
  • Konuklu, Y., Paksoy, H., Faz Değiştiren Maddeler ile Binalarda Enerji Verimliliği, 10. Ulusal Tesisat Mühendisliği Kongresi, 919-930, 2011.
  • Konuklu, Y., Ostry, M., Paksoy, H.O., Charvat, P., Review on Using Microencapsulated Phase Change Materials (PCM) in Building Applications, Energy Build., 106, 134– 155. 2015.
  • Zalba, B., Marin, J. M., Cabeza, L. F., Ve Mehling, H., Review on Thermal Energy Storage With Phase Change Materials, Heat Transfer Analysis and Applications, Applied Thermal Engineering, Vol.23, 251-283, 2003.
  • Mishra, A., Shukla, A., Sharma, A., Latent Heat Storage Through Phase Change Materials, Resonance, 532-541, 2015.
  • Casini, M., Smart Materials and Nanotechnology for Energy Retrofit of Historic Buildings, Journal of Advances in Civil, Structural and Construction Engineering, Csce, 1, 3, 88-97, 2014.
  • Hesaraki, A., Holmberg, S., Haghighat, F., Seasonal Thermal Energy Storage with Heat Pumps and Low Temperatures in Building Projects—A Comparative Review., Renew Sustain Energy Rev; 43:1199–213, 2015.
  • De Gracia, A., Cabeza, L.F., Phase Change Materials and Thermal Energy Storage for Buildings. Energy Build., 2015.
  • Salunkhe, P. B., Shembekar, P. S., A Review on Effect Of Phase Change Material Encapsulation on the Thermal Performance of a System Renew. Sustain. Energy Rev; 16, 5603–16, 2012.
  • Mahlia T.M.I, Saktisahdan T.J, Jannifar A.,Hasan M.H, Matseelar H.S C., A Review of Available Methods and Development on Energy Storage; Technology Update. Renew Sustain Energy Rev; 33:532–45, 2014.
  • Cabeza, L.F, Barreneche, C., Martorell, I., Miró, L., Sari- Bey, S., Fois, M., Unconventional Experimental Technologies Available for Phase Change Materials (PCM) Characterization. Part 1. Thermophysical Properties. Renew Sustain Energy Rev, 2014.
  • Kos´ny, J., PCM-Enhanced Building Components - An Application of Phase Change Materials in Building Envelopes and Internal Structures. Switzerland: Springer International Publishing, 2015.
  • Klein, S.A., TRNSYS 17: A Transient System Simulation Program, 2011. 〈http://www.trnsys.com/〉
  • Tokuç A., Bina Enerji Benzetim Araçları Ve Seçim Ölçütleri, Dokuz Eylül Mühendislik Bilimleri Dergisi, 5,3, 2009.
  • Li, G., Energy and Exergy Performance Assessments for Latent Heat Thermal Energy Storage Systems. Renew Sustain Energy Rev; 51, 926–54, 2015.
  • Kelly N.J., Towards A Design Environment for Building- Integrated Energy Systems: The İntegration of Electrical Power Flow Modelling with Building Simulation, Phd Thesis, Glasgow: University Of Strathclyde, UK, 1998.
  • Orhon, A. V., Altın, M., Mimari Sürdürülebilirlik için Bir Değerlendirme Aracı Olarak Benzetim, Tesisat Mühendisliği, 158, 5-13, 2017.
  • Ellis, P.G., Torcellini, P.A., Crawley, D.B.. Simulation of Energy Management Systems in Energyplus. Build Simul 2007,1346–53, 2007.
  • Crawley, B.D.B., Lawrie, L.K., Energyplus: Energy Simulation Program. ASHRAE, 42,49–56, 2000.
  • Crawley, D.B., Hand, J.W., Kummert, M., Griffith, B.T., Contrasting the Capabilities of Building Energy Performance Simulation Programs. Build. Environ. 43,661– 73, 2008.
  • Zöller, A., Jung, M., Schmidt, M., Brenner, T., Gatzka, B., Schossig, P., Haussmann, T. Abschlussbericht Zum Verbundforschungsvorhaben‚ Aktive Latentspeichersysteme Für Gebäude. Fraunhofer ISE, Gemeinsamer Bericht Aller Projektteilnehmer İn Den Teilprojekten 0327370G-K, 0327370S, 2008.
  • Schranzhofer, H., Puschnig, P., Heinz, A., Streicher, W., Validation of a TRNSYS Simulation Model for PCM Energy Storages and PCM Wall Construction Elements. In: Proceedings of ECOSTOCK 2006—10th International Conference on Thermal Energy Storage. Pomona, NJ, 2006.
  • Al-Saadi, S.N., Zhai, Z., Modeling Phase Change Materials Embedded in Building Enclosure: A Review. Renew Sustain Energy Rev, 21, 659–73, 2013.
  • Plytaria, M. T., Tzivanidis, C., Bellos, E., Alexopoulos, I., and Antonopoulos, K. A., Thermal Behavior of a Building with Incorporated Phase Change Materials in the South and The North Wall, Computation, 7,2, 2019.
  • Borderon, J., Virgone, J., and Cantin, R. (2015). Modeling and Simulation of a Phase Change Material System for Improving Summer Comfort in Domestic Residence. Applied Energy, 140, 288–296.
  • Ascione, F., Bianco, N., De Masi, R.F., De’ Rossi, F., Vanoli, G.P., Energy Refurbishment of Existing Buildings Through the Use of Phase Change Materials: Energy Savings and Indoor Comfort in The Cooling Season. Appl Energy, 113,990–1007,2014.
  • Chan, A.L.S., Energy and Environmental Performance of Building Facades Integrated with Phase Change Material in Subtropical Hong Kong. Energy Build., 43,2947-55, 2011.
  • Lei, J., Yang, J., Yang, E-H., Energy Performance of Building Envelopes Integrated with Phase Change Materials for Cooling Load Reduction in Tropical Singapore. Appl. Energy;162,207-17, 2016.
  • Nghaana, B., Tariku, F., Phase Change Material’s (PCM) Impacts on the Energy Performance and Thermal Comfort of Buildings in a Mild Climate. Building and Environment, 2016
  • Almeida, F., Zhang, D., Fung, A.S., Leong W. H., Investigation of Multilayered Phase-Change-Material Modeling in ESP-R, International High Performance Buildings Conference, 2010.
  • Kośny, J., Fallahi, A., Shukla, N., Kossecka, E., Ahbari, R., Thermal Load Mitigation and Passive Cooling in Residential Attics Containing PCM-Enhanced Insulations. Sol Energy 108,164-177, 2014.
  • Heim, D., Clarke, J.A., Numerical Modeling and Thermal Simulation of PCM–Gypsum Composites with ESP-R. Energy Build 36,795-805, 2004.
  • Almeida, F., Zhang, D., Fung, A.S., Leong W. H., Comparıson of Corrective Phase Change Material Algorithm With Esp-R Simulation, 12th Conference of International Building Performance Simulation Association, Sydney, 14-16 November, 2011.
  • Rodríguez -Ubiñas, E., Cronemberger, J., Vega Sánchez, S. and García-Santos, A. Performance of Passive Application of PCM in Spain, Researchgate, 2010.
There are 34 citations in total.

Details

Primary Language Turkish
Subjects Engineering
Journal Section Review
Authors

Necla Seval Bayram 0000-0002-9522-0270

Ahmet Vefa Orhon 0000-0003-2465-1951

Project Number 2019.KB.FEN.020
Publication Date December 25, 2020
Submission Date October 7, 2020
Published in Issue Year 2020 Volume: 4 Issue: 2

Cite

APA Bayram, N. S., & Orhon, A. V. (2020). Enerji Simülasyon Araçları ile Binalarda Faz Değiştiren Malzeme Uygulamaları. International Journal of Innovative Engineering Applications, 4(2), 55-63. https://doi.org/10.46460/ijiea.807083
AMA Bayram NS, Orhon AV. Enerji Simülasyon Araçları ile Binalarda Faz Değiştiren Malzeme Uygulamaları. IJIEA. December 2020;4(2):55-63. doi:10.46460/ijiea.807083
Chicago Bayram, Necla Seval, and Ahmet Vefa Orhon. “Enerji Simülasyon Araçları Ile Binalarda Faz Değiştiren Malzeme Uygulamaları”. International Journal of Innovative Engineering Applications 4, no. 2 (December 2020): 55-63. https://doi.org/10.46460/ijiea.807083.
EndNote Bayram NS, Orhon AV (December 1, 2020) Enerji Simülasyon Araçları ile Binalarda Faz Değiştiren Malzeme Uygulamaları. International Journal of Innovative Engineering Applications 4 2 55–63.
IEEE N. S. Bayram and A. V. Orhon, “Enerji Simülasyon Araçları ile Binalarda Faz Değiştiren Malzeme Uygulamaları”, IJIEA, vol. 4, no. 2, pp. 55–63, 2020, doi: 10.46460/ijiea.807083.
ISNAD Bayram, Necla Seval - Orhon, Ahmet Vefa. “Enerji Simülasyon Araçları Ile Binalarda Faz Değiştiren Malzeme Uygulamaları”. International Journal of Innovative Engineering Applications 4/2 (December 2020), 55-63. https://doi.org/10.46460/ijiea.807083.
JAMA Bayram NS, Orhon AV. Enerji Simülasyon Araçları ile Binalarda Faz Değiştiren Malzeme Uygulamaları. IJIEA. 2020;4:55–63.
MLA Bayram, Necla Seval and Ahmet Vefa Orhon. “Enerji Simülasyon Araçları Ile Binalarda Faz Değiştiren Malzeme Uygulamaları”. International Journal of Innovative Engineering Applications, vol. 4, no. 2, 2020, pp. 55-63, doi:10.46460/ijiea.807083.
Vancouver Bayram NS, Orhon AV. Enerji Simülasyon Araçları ile Binalarda Faz Değiştiren Malzeme Uygulamaları. IJIEA. 2020;4(2):55-63.