Review
BibTex RIS Cite

Orta Frekans Doğru Akım Direnç Nokta Kaynak Sistemlerinde Kullanılan Evirici Topolojilerinin İncelenmesi

Year 2021, Volume: 5 Issue: 2, 225 - 236, 31.12.2021
https://doi.org/10.46460/ijiea.1018184

Abstract

Direnç nokta kaynağı (DNK), özellikle otomotiv sanayisinde yaygın bir şekilde kullanılan bir metal birleştirme yöntemidir. Endüstrideki gelişmelere paralel olarak kaynak teknolojileri de gelişmektedir. Geleneksel alternatif akım direnç nokta kaynak sistemleri (AA-DNK), yerini yeni nesil orta frekans doğru akım direnç nokta kaynak (OFDA-DNK) sistemlerine bırakmaktadır. Ayıca, OFDA-DNK, Endüstri 4.0 içerisinde önemli role sahip robotlar ile uyumlu bir şekilde çalışabilecek, enerji verimliliği yüksek yöntemlerden biridir. Bu çalışmada kaynak teknolojisinde önemli yere sahip direnç kaynak yöntemleri sınıflandırılarak yeni nesil OFDA-DNK sistemlerindeki gelişmeler incelenmiştir. İfade edilen kaynak yönteminin avantaj ve dezavantajları, geleneksel AA-DNK sistemleri ile karşılaştırılmıştır. Ayrıca güç elektroniği teknolojisine dayalı OFDA-DNK sistemlerinin evirici topolojisi incelenmiştir.

References

  • Jenney, C. L., & O’Brien, A. (2001). Welding handbook: welding science and technology. Woodhead Publishing Ltd., 985 p.
  • Zhao, D., Bezgans, Y., Wang, Y., Du, W., & Vdonin, N. (2021). Research on the correlation between dynamic resistance and quality estimation of resistance spot welding. Measurement, 168, 108299.
  • Deepati, A. K., Alhazmi, W., & Benjeer, I. (2021). Mechanical characterization of AA5083 aluminum alloy welded using resistance spot welding for the lightweight automobile body fabrication. Materials Today: Proceedings, 45, 5139-5148.
  • Stepien, M., Mikno, Z., & Grzesik, B. (2019 June). Experimental Determination of Efficiency and Power Losses in Resistance Welding Machines. In 2019 Electric Power Quality and Supply Reliability Conference (PQ) & 2019 Symposium on Electrical Engineering and Mechatronics (SEEM) (pp. 1-4). IEEE.
  • Zhou, K., & Li, H. (2020). A comparative study of single-phase AC and medium frequency DC resistance spot welding using finite element modeling. IEEE Access, 8, 107260–107271.
  • Zhou K., & Cai, L. (2011, June). Improvement in control system for the medium frequency direct current resistance spot welding system. In Proceedings of the 2011 American Control Conference (pp. 2657-2662). IEEE.
  • Zhou, K., & Yao, P. (2017). Review of application of the electrical structure in resistance spot welding. IEEE Access, 5, 25741–25749.
  • Podržaj, P., Polajnar, I., Diaci, J., & Kariž, Z. (2008). Overview of resistance spot welding control. Science and Technology of Welding and Joining, 13(3), 215–224.
  • Dejans, A., Kurtov, O., & Van Rymenant, P. (2021). Acoustic emission as a tool for prediction of nugget diameter in resistance spot welding. Journal of Manufacturing Processes, 62, 7–17.
  • Zhou, K., Yao, P., & Cai, L. (2015). Constant current vs. constant power control in AC resistance spot welding. Journal of Materials Processing Technology, 223, 299–304.
  • Baldwin, T., Hogans, T., Henry, S., Renovich, F., & Latkovic, P. (2005). Reactive power compensation for voltage control at resistance welders. IEEE Transaction Industrial applications, 41(6), 1485-1492.
  • Pouranvari, M. (2017). Critical assessment 27: dissimilar resistance spot welding of aluminium/steel: challenges and opportunities. Materials Science and Technology, 33(15), 1705–1712.
  • Giaccone, L., Cirimele, V., & Canova, A. (2020). Mitigation solutions for the magnetic field produced by MFDC spot welding guns. IEEE Transactions on Electromagnetic Compatibility, 62(1), 83–92.
  • Stumberger, G., Dezelak, K., Polajzer, B., Dolinar, D., & Klopcic, B. (2008, October). The Impact of voltage generation on harmonic spectra of current and flux density in the welding transformer for a middle frequency resistance spot welding system. In 2008 IEEE Industry Applications Society Annual Meeting (pp. 1-8). IEEE.
  • Wang, X., Zhou, K., & Shen, S. (2021). Intelligent parameters measurement of electrical structure of medium frequency DC resistance spot welding system. Measurement, 171, 108795.
  • Nagasathya, N., Boopathy, S. R., & Santhakumari, A. (2013, April). MFDC - An energy efficient adaptive technology for welding of thin sheets. In 2013 International Conference on Energy Efficient Technologies for Sustainability (pp. 901-906). IEEE.
  • Rashid, M. H. (2001). Power electronics handbook (Engineering), Academic Press, 892 p.
  • Lazim, M. T. (2019). Power electronics and drives, Philadelphia University, Jordan.
  • Lander, C. W. (1993). Power electronics, McGraw-Hill Education.
  • Vujacic, M., Hammami, M., Srndovic, M., & Grandi, G. (2017). Theoretical and experimental investigation of switching ripple in the DC-link voltage of single-phase H-bridge PWM inverters. Energies, 10(8), 1189.
  • Qin, Z., Tang, Y., Loh, P. C., & Blaabjerg, F. (2016). Benchmark of AC and DC active power decoupling circuits for second-order harmonic mitigation in kilowatt-scale single-phase inverters. IEEE Journal of Emerging and Selected Topics in Power Electronics, 4(1), 15–25.
  • Fazia, L., Peretti, L., & Zigliotto, M. (2008, April). Repetitive control and virtual bleeder resistor for AC generator sets with harmonic-sensitive loads. In 2008 4th IET Conference on Power Electronics, Machines and Drives (pp. 144-148). IET.
  • Klopcic, B., Stumberger, G., & Dolinar, D. (2007, September). Iron core saturation of a welding transformer in a medium frequency resistance spot welding system caused by the asymmetric output rectifier characteristics. In 2007 IEEE Industry Applications Annual Meeting (pp. 2319-2326). IEEE.
  • Petrun, M., Klopcic, B., Polajzer, B., & Dolinar, D. (2012). Evaluation of iron core quality for resistance spot welding transformers using current controlled supply. IEEE Transactions on Magnetics, 48(4), 1633–1636.
  • Wagner, M., & Bernet, S. (2013, September). High frequency inverter for resistance spot welding applications with increased power cycling capability. In 2013 Africon (pp. 1-7). IEEE.
  • Brezovnik, R., Cernelic, J., Petrun, M., Dolinar, D., & Ritonja, J. (2017). Impact of the switching frequency on the welding current of a spot-welding system. IEEE Transactions on Industrial Electronics, 64(12), 9291–9301.
  • Lobsiger, Y., & Kolar, J. W. (2015). Closed-loop di/dt and dv/dt IGBT gate driver. IEEE Transactions on Power Electronics, 30(6), 3402–3417.
  • Denk, M., & Bakran, M. M. (2015). Online junction temperature cycle recording of an IGBT power module in a hybrid car. Advances in Power Electronics, 2015, 14 p.
  • Saleem, J., Majid, A., Haller, S., & Bertilsson, K. (2011, September). A study of IGBT rupture phenomenon in medium frequency resistance welding machine. In International Aegean Conference on Electrical Machines and Power Electronics and Electromotion, Joint Conference (pp. 236-239). IEEE.
  • Yu, Q., Lemmen, E., Wijnands, C. G. E., & Vermulst, B. (2021). Output spectrum modeling of an H-bridge inverter with dead-time based on switching mode analysis. IEEE Transactions on Power Electronics, 36(10), 11344-11356.
  • Zammit, D., Staines, C. S., & Apap, M. (2016). Compensation techniques for non-linearities in H-bridge inverters. Journal of Electrical Systems and Information Technology, 3(3), 361–376.
  • Jabavathi, J. D., & Sait, H. (2020). Design of a single chip PWM driver circuit for inverter welding power source. IEEE Transactions on Circuits and Systems II: Express Briefs, 67(4), 720–724.
  • Lund, S. H. J., Billeschou, P., & Larsen, L. B. (2019). High-bandwidth active impedance control of the proprioceptive actuator design in dynamic compliant robotics. Actuators, 8(4), 71–103.

Investigation of Inverter Topologies Used in Medium Frequency Direct Current Resistance Spot Welding Systems

Year 2021, Volume: 5 Issue: 2, 225 - 236, 31.12.2021
https://doi.org/10.46460/ijiea.1018184

Abstract

Resistance spot welding (RSW) is a metal joining method that is widely used, especially in the automotive industry. Welding technologies are also developing in parallel with the developments in the industry. Traditional alternating current resistance spot welding systems (AC-RSW) are being replaced by new generation medium frequency direct current resistance spot welding (MFDC-RSW) systems. In addition, MFDC-RSW is one of the high energy efficient methods that can work in harmony with robots that have an important role in Industry 4.0.
In this study, resistance welding methods, which have an important place in welding technology, are classified and the developments in the new generation MFDC-RSW systems are examined. The advantages and disadvantages of the stated welding method are compared with conventional AC-RSW systems. In addition, the inverter topology of MFDC-RSW systems based on power electronics technology has been examined.

References

  • Jenney, C. L., & O’Brien, A. (2001). Welding handbook: welding science and technology. Woodhead Publishing Ltd., 985 p.
  • Zhao, D., Bezgans, Y., Wang, Y., Du, W., & Vdonin, N. (2021). Research on the correlation between dynamic resistance and quality estimation of resistance spot welding. Measurement, 168, 108299.
  • Deepati, A. K., Alhazmi, W., & Benjeer, I. (2021). Mechanical characterization of AA5083 aluminum alloy welded using resistance spot welding for the lightweight automobile body fabrication. Materials Today: Proceedings, 45, 5139-5148.
  • Stepien, M., Mikno, Z., & Grzesik, B. (2019 June). Experimental Determination of Efficiency and Power Losses in Resistance Welding Machines. In 2019 Electric Power Quality and Supply Reliability Conference (PQ) & 2019 Symposium on Electrical Engineering and Mechatronics (SEEM) (pp. 1-4). IEEE.
  • Zhou, K., & Li, H. (2020). A comparative study of single-phase AC and medium frequency DC resistance spot welding using finite element modeling. IEEE Access, 8, 107260–107271.
  • Zhou K., & Cai, L. (2011, June). Improvement in control system for the medium frequency direct current resistance spot welding system. In Proceedings of the 2011 American Control Conference (pp. 2657-2662). IEEE.
  • Zhou, K., & Yao, P. (2017). Review of application of the electrical structure in resistance spot welding. IEEE Access, 5, 25741–25749.
  • Podržaj, P., Polajnar, I., Diaci, J., & Kariž, Z. (2008). Overview of resistance spot welding control. Science and Technology of Welding and Joining, 13(3), 215–224.
  • Dejans, A., Kurtov, O., & Van Rymenant, P. (2021). Acoustic emission as a tool for prediction of nugget diameter in resistance spot welding. Journal of Manufacturing Processes, 62, 7–17.
  • Zhou, K., Yao, P., & Cai, L. (2015). Constant current vs. constant power control in AC resistance spot welding. Journal of Materials Processing Technology, 223, 299–304.
  • Baldwin, T., Hogans, T., Henry, S., Renovich, F., & Latkovic, P. (2005). Reactive power compensation for voltage control at resistance welders. IEEE Transaction Industrial applications, 41(6), 1485-1492.
  • Pouranvari, M. (2017). Critical assessment 27: dissimilar resistance spot welding of aluminium/steel: challenges and opportunities. Materials Science and Technology, 33(15), 1705–1712.
  • Giaccone, L., Cirimele, V., & Canova, A. (2020). Mitigation solutions for the magnetic field produced by MFDC spot welding guns. IEEE Transactions on Electromagnetic Compatibility, 62(1), 83–92.
  • Stumberger, G., Dezelak, K., Polajzer, B., Dolinar, D., & Klopcic, B. (2008, October). The Impact of voltage generation on harmonic spectra of current and flux density in the welding transformer for a middle frequency resistance spot welding system. In 2008 IEEE Industry Applications Society Annual Meeting (pp. 1-8). IEEE.
  • Wang, X., Zhou, K., & Shen, S. (2021). Intelligent parameters measurement of electrical structure of medium frequency DC resistance spot welding system. Measurement, 171, 108795.
  • Nagasathya, N., Boopathy, S. R., & Santhakumari, A. (2013, April). MFDC - An energy efficient adaptive technology for welding of thin sheets. In 2013 International Conference on Energy Efficient Technologies for Sustainability (pp. 901-906). IEEE.
  • Rashid, M. H. (2001). Power electronics handbook (Engineering), Academic Press, 892 p.
  • Lazim, M. T. (2019). Power electronics and drives, Philadelphia University, Jordan.
  • Lander, C. W. (1993). Power electronics, McGraw-Hill Education.
  • Vujacic, M., Hammami, M., Srndovic, M., & Grandi, G. (2017). Theoretical and experimental investigation of switching ripple in the DC-link voltage of single-phase H-bridge PWM inverters. Energies, 10(8), 1189.
  • Qin, Z., Tang, Y., Loh, P. C., & Blaabjerg, F. (2016). Benchmark of AC and DC active power decoupling circuits for second-order harmonic mitigation in kilowatt-scale single-phase inverters. IEEE Journal of Emerging and Selected Topics in Power Electronics, 4(1), 15–25.
  • Fazia, L., Peretti, L., & Zigliotto, M. (2008, April). Repetitive control and virtual bleeder resistor for AC generator sets with harmonic-sensitive loads. In 2008 4th IET Conference on Power Electronics, Machines and Drives (pp. 144-148). IET.
  • Klopcic, B., Stumberger, G., & Dolinar, D. (2007, September). Iron core saturation of a welding transformer in a medium frequency resistance spot welding system caused by the asymmetric output rectifier characteristics. In 2007 IEEE Industry Applications Annual Meeting (pp. 2319-2326). IEEE.
  • Petrun, M., Klopcic, B., Polajzer, B., & Dolinar, D. (2012). Evaluation of iron core quality for resistance spot welding transformers using current controlled supply. IEEE Transactions on Magnetics, 48(4), 1633–1636.
  • Wagner, M., & Bernet, S. (2013, September). High frequency inverter for resistance spot welding applications with increased power cycling capability. In 2013 Africon (pp. 1-7). IEEE.
  • Brezovnik, R., Cernelic, J., Petrun, M., Dolinar, D., & Ritonja, J. (2017). Impact of the switching frequency on the welding current of a spot-welding system. IEEE Transactions on Industrial Electronics, 64(12), 9291–9301.
  • Lobsiger, Y., & Kolar, J. W. (2015). Closed-loop di/dt and dv/dt IGBT gate driver. IEEE Transactions on Power Electronics, 30(6), 3402–3417.
  • Denk, M., & Bakran, M. M. (2015). Online junction temperature cycle recording of an IGBT power module in a hybrid car. Advances in Power Electronics, 2015, 14 p.
  • Saleem, J., Majid, A., Haller, S., & Bertilsson, K. (2011, September). A study of IGBT rupture phenomenon in medium frequency resistance welding machine. In International Aegean Conference on Electrical Machines and Power Electronics and Electromotion, Joint Conference (pp. 236-239). IEEE.
  • Yu, Q., Lemmen, E., Wijnands, C. G. E., & Vermulst, B. (2021). Output spectrum modeling of an H-bridge inverter with dead-time based on switching mode analysis. IEEE Transactions on Power Electronics, 36(10), 11344-11356.
  • Zammit, D., Staines, C. S., & Apap, M. (2016). Compensation techniques for non-linearities in H-bridge inverters. Journal of Electrical Systems and Information Technology, 3(3), 361–376.
  • Jabavathi, J. D., & Sait, H. (2020). Design of a single chip PWM driver circuit for inverter welding power source. IEEE Transactions on Circuits and Systems II: Express Briefs, 67(4), 720–724.
  • Lund, S. H. J., Billeschou, P., & Larsen, L. B. (2019). High-bandwidth active impedance control of the proprioceptive actuator design in dynamic compliant robotics. Actuators, 8(4), 71–103.
There are 33 citations in total.

Details

Primary Language Turkish
Subjects Engineering
Journal Section Review
Authors

Can Özensoy 0000-0003-4878-2606

Murat Uyar 0000-0001-7243-7939

Early Pub Date December 30, 2021
Publication Date December 31, 2021
Submission Date November 3, 2021
Published in Issue Year 2021 Volume: 5 Issue: 2

Cite

APA Özensoy, C., & Uyar, M. (2021). Orta Frekans Doğru Akım Direnç Nokta Kaynak Sistemlerinde Kullanılan Evirici Topolojilerinin İncelenmesi. International Journal of Innovative Engineering Applications, 5(2), 225-236. https://doi.org/10.46460/ijiea.1018184
AMA Özensoy C, Uyar M. Orta Frekans Doğru Akım Direnç Nokta Kaynak Sistemlerinde Kullanılan Evirici Topolojilerinin İncelenmesi. IJIEA. December 2021;5(2):225-236. doi:10.46460/ijiea.1018184
Chicago Özensoy, Can, and Murat Uyar. “Orta Frekans Doğru Akım Direnç Nokta Kaynak Sistemlerinde Kullanılan Evirici Topolojilerinin İncelenmesi”. International Journal of Innovative Engineering Applications 5, no. 2 (December 2021): 225-36. https://doi.org/10.46460/ijiea.1018184.
EndNote Özensoy C, Uyar M (December 1, 2021) Orta Frekans Doğru Akım Direnç Nokta Kaynak Sistemlerinde Kullanılan Evirici Topolojilerinin İncelenmesi. International Journal of Innovative Engineering Applications 5 2 225–236.
IEEE C. Özensoy and M. Uyar, “Orta Frekans Doğru Akım Direnç Nokta Kaynak Sistemlerinde Kullanılan Evirici Topolojilerinin İncelenmesi”, IJIEA, vol. 5, no. 2, pp. 225–236, 2021, doi: 10.46460/ijiea.1018184.
ISNAD Özensoy, Can - Uyar, Murat. “Orta Frekans Doğru Akım Direnç Nokta Kaynak Sistemlerinde Kullanılan Evirici Topolojilerinin İncelenmesi”. International Journal of Innovative Engineering Applications 5/2 (December 2021), 225-236. https://doi.org/10.46460/ijiea.1018184.
JAMA Özensoy C, Uyar M. Orta Frekans Doğru Akım Direnç Nokta Kaynak Sistemlerinde Kullanılan Evirici Topolojilerinin İncelenmesi. IJIEA. 2021;5:225–236.
MLA Özensoy, Can and Murat Uyar. “Orta Frekans Doğru Akım Direnç Nokta Kaynak Sistemlerinde Kullanılan Evirici Topolojilerinin İncelenmesi”. International Journal of Innovative Engineering Applications, vol. 5, no. 2, 2021, pp. 225-36, doi:10.46460/ijiea.1018184.
Vancouver Özensoy C, Uyar M. Orta Frekans Doğru Akım Direnç Nokta Kaynak Sistemlerinde Kullanılan Evirici Topolojilerinin İncelenmesi. IJIEA. 2021;5(2):225-36.