Review
BibTex RIS Cite

Pompaj Hidroelektrik Depolama Sistemleri hakkında bir değerlendirme

Year 2022, Volume: 6 Issue: 2, 205 - 214, 30.12.2022
https://doi.org/10.46460/ijiea.1074300

Abstract

Akıllı şebekelerde, dağıtım sistemlerine bağlı yenilenebilir enerji kaynaklarının sayısını artırmak ve enerjinin sürekliliğini sağlamak için depolama sistemlerine ihtiyaç duyulmaktadır. Enerji depolama, sistem elemanlarını destekleyerek, enerji zaman kaydırması, kesinti kontrolü, iletimde sürekliliğin sağlanması ve güç kalitesi iyileştirmeleri gibi birçok hizmeti verebilmektedir. Akıllı şebeke uygulamalarında şarj/deşarj, güvenlik, boyut ve maliyet gibi çeşitli sorunlardan dolayı enerji depolamada zorluklarla karşılaşılmaktadır. Bu nedenle depolama performansını artırabilecek enerji kapasitesi, kontrolü ve korunması için enerji depolama sistemleri geliştirilmelidir. Rüzgar ve güneş gibi yenilenebilir enerji kaynaklarında kesintiler ve dalgalar olduğu için depolama için piller kullanılmaktadır. Temiz enerji kullanımını yaygınlaştırmak ve enerji sürekliliğini sağlamak için büyük güçlü sistemlerde mekanik depolama yöntemleri üzerinde durulmuştur. Verimliliği artırmak, elektrik sistemlerinde esneklik sağlamak, maliyetleri düşürmek ve depolama süresini iyileştirmek, güç dalgalanmalarını azaltmak için depolama çalışmaları yapılmıştır. Bu çalışmada depolama yöntemlerinden biri olan pompajlı hidroelektrik depolama tesisleri incelenmiştir. Pompalı depolamalı hidroelektrik sisteminin avantaj ve dezavantajlarına değinilmiş ve hibrit pompalı hidro depolama anlatılmıştır. Ekonomik katkısına da kısaca değinilmiştir. PHES'in bu depolama yönteminin, verimliliği artırmak, maliyetleri düşürmek ve yerden tasarruf etmek için değişken hızlı türbinlere, yeraltı suyuna, deniz suyuna ve yenilenebilir enerjilere bağlanabilen hibrit sistemler olduğu da tespit edilmiştir. Bu sistemler arasında güneş ve rüzgarın hibrit olarak kullanıldığı sistemin enerji piyasasında yüksek karlılık sağlamada da avantajlı olduğu gözlemlenmiştir. Güneş ve rüzgar ile entegrasyonu sayesinde karbon salınımı azalır.

References

  • Barbour, E., Wilson, I. G., Radcliffe, J., Ding, Y., & Li, Y. (2016). A review of pumped hydro energy storage development in significant international electricity markets. Renewable and sustainable energy reviews, 61, 421-432..
  • Vilanova, M. R. N., Flores, A. T., & Balestieri, J. A. P. (2020). Pumped hydro storage plants: a review. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 42(8), 1-14..
  • Blakers, A., Stocks, M., Lu, B., & Cheng, C. (2021). A review of pumped hydro energy storage. Progress in Energy, 3(2), 022003..
  • Kocaman, B. (2013). Akıllı şebekeler ve mikro şebekelerde enerji depolama teknolojileri. Bitlis Eren Üniversitesi Fen Bilimleri Dergisi, 2(1), 119-127..
  • McIlwaine, N., Foley, A. M., Morrow, D. J., Al Kez, D., Zhang, C., Lu, X., & Best, R. J. (2021). A state-of-the-art techno-economic review of distributed and embedded energy storage for energy systems. Energy, 229, 120461.
  • Punys, P., Baublys, R., Kasiulis, E., Vaisvila, A., Pelikan, B., & Steller, J. (2013). Assessment of renewable electricity generation by pumped storage power plants in EU Member States. Renewable and Sustainable Energy Reviews, 26, 190-200.
  • Ali, S., Stewart, R. A., & Sahin, O. (2021). Drivers and barriers to the deployment of pumped hydro energy storage applications: Systematic literature review. Cleaner Engineering and Technology, 5, 100281..
  • Nehrir, M. H., Wang, C., Strunz, K., Aki, H., Ramakumar, R., Bing, J., ... & Salameh, Z. (2011). A review of hybrid renewable/alternative energy systems for electric power generation: Configurations, control, and applications. IEEE transactions on sustainable energy, 2(4), 392-403.
  • Aktas, A., Erhan, K., Özdemir, S., & Özdemir, E. (2018). Dynamic energy management for photovoltaic power system including hybrid energy storage in smart grid applications. Energy, 162, 72-82.
  • Faisal, M., Hannan, M. A., Ker, P. J., Hussain, A., Mansor, M. B., & Blaabjerg, F. (2018). Review of energy storage system technologies in microgrid applications: Issues and challenges. Ieee Access, 6, 35143-35164.
  • Babu, T. S., Vasudevan, K. R., Ramachandaramurthy, V. K., Sani, S. B., Chemud, S., & Lajim, R. M. (2020). A comprehensive review of hybrid energy storage systems: Converter topologies, control strategies and future prospects. IEEE Access, 8, 148702-148721.
  • Mousavi, N., Kothapalli, G., Habibi, D., Lachowicz, S. W., & Moghaddam, V. (2020). A real-time energy management strategy for pumped hydro storage systems in farmhouses. Journal of Energy Storage, 32, 101928.
  • Tian, M. W., Yan, S. R., Tian, X. X., Nojavan, S., & Jermsittiparsert, K. (2020). Risk and profit-based bidding and offering strategies for pumped hydro storage in the energy market. Journal of Cleaner Production, 256, 120715.
  • Gundu, V., & Simon, S. P. (2020). A novel energy routing technique with hybrid energy storage for residential electricity cost minimization in a smart distribution network. Energy sources, part A: Recovery, utilization, and environmental effects, 1-18.
  • Al-Masri, H. M., Magableh, S. K., Abuelrub, A., Saadeh, O., & Ehsani, M. (2020). Impact of different photovoltaic models on the design of a combined solar array and pumped hydro storage system. Applied Sciences, 10(10), 3650.
  • Bagheri‐Sanjareh, M., Nazari, M. H., & Hosseinian, S. H. (2021). Energy management of islanded microgrid by coordinated application of thermal and electrical energy storage systems. International Journal of Energy Research, 45(4), 5369-5385.
  • Kutucu, N., Terzi, Ü. K., & Ayirga, H. Y. (2017, April). Technical and economic analysis of energy storage systems in smart grids. In 2017 5th International Istanbul Smart Grid and Cities Congress and Fair (ICSG) (pp. 166-170). IEEE.
  • Rehman, S., Al-Hadhrami, L. M., & Alam, M. M. (2015). Pumped hydro energy storage system: A technological review. Renewable and Sustainable Energy Reviews, 44, 586-598.
  • Pärnamäe, R., Gurreri, L., Post, J., van Egmond, W. J., Culcasi, A., Saakes, M., ... & Tedesco, M. (2020). The acid–base flow battery: Sustainable energy storage via reversible water dissociation with bipolar membranes. Membranes, 10(12), 409.
  • Yang, C. J. (2016). Pumped hydroelectric storage. In Storing Energy (pp. 25-38). Elsevier.
  • Gürsakal, H., & Uyumaz, A. (2021). Pompaj Depolamalı Hidroelektrik Santrallerin Optimizasyonunda Karlılık Analizi Ve Çalışma Süresi Tayini. Mühendislik Bilimleri ve Tasarım Dergisi, 9(2), 436-452.
  • Guittet, M., Capezzali, M., Gaudard, L., Romerio, F., Vuille, F., & Avellan, F. (2016). Study of the drivers and asset management of pumped-storage power plants historical and geographical perspective. Energy, 111, 560-579.
  • Chauhan, A., & Saini, R. P. (2014). A review on Integrated Renewable Energy System based power generation for stand-alone applications: Configurations, storage options, sizing methodologies and control. Renewable and Sustainable Energy Reviews, 38, 99-120.
  • Ünver, Ü., Bilgin, H., & Güven, A. (2015). Pompaj depolamalı hidroelektrik sistemler. Mühendis ve Makina, 56 (663), 57-64.
  • Zhao, H., Wu, Q., Hu, S., Xu, H., & Rasmussen, C. N. (2015). Review of energy storage system for wind power integration support. Applied energy, 137, 545-553.
  • Chen, H., Cong, T. N., Yang, W., Tan, C., Li, Y., & Ding, Y. (2009). Progress in electrical energy storage system: A critical review. Progress in natural science, 19(3), 291-312.
  • Stocks, M., Stocks, R., Lu, B., Cheng, C., & Blakers, A. (2021). Global atlas of closed-loop pumped hydro energy storage. Joule, 5(1), 270-284.
  • Barbour, E., Wilson, I. G., Radcliffe, J., Ding, Y., & Li, Y. (2016). A review of pumped hydro energy storage development in significant international electricity markets. Renewable and sustainable energy reviews, 61, 421-432.
  • Deane, J. P., Gallachóir, B. Ó., & McKeogh, E. J. (2010). Techno-economic review of existing and new pumped hydro energy storage plant. Renewable and Sustainable Energy Reviews, 14(4), 1293-1302.
  • Punys, P., Baublys, R., Kasiulis, E., Vaisvila, A., Pelikan, B., & Steller, J. (2013). Assessment of renewable electricity generation by pumped storage power plants in EU Member States. Renewable and Sustainable Energy Reviews, 26, 190-200.
  • Yıldız, C., & Şekkeli, M. (2016). Türkiye gün öncesi elektrik piyasasında rüzgar enerjisi ve pompaj depolamalı hidroelektrik santral için optimum teklif oluşturulması. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, 22(5), 361-366.
  • Makhdoomi, S., & Askarzadeh, A. (2020). Daily performance optimization of a grid-connected hybrid system composed of photovoltaic and pumped hydro storage (PV/PHS). Renewable Energy, 159, 272-285.
  • Kabalcı, E., Bayındır R., & Tür, M.R. (2021). Mikroşebekeler ve dağıtık üretim sistemleri. Ankara: Nobel Akademik Yayıncılık
  • Valavi, M., & Nysveen, A. (2018). Variable-speed operation of hydropower plants: A look at the past, present, and future. IEEE Industry Applications Magazine, 24(5), 18-27.
  • Pujades, E., Orban, P., Archambeau, P., Erpicum, S., & Dassargues, A. (2018). Numerical study of the Martelange mine to be used as underground reservoir for constructing an Underground Pumped Storage Hydropower plant. Advances in Geosciences, 45, 51-56.
  • Menéndez, J., Fernández-Oro, J. M., Galdo, M., & Loredo, J. (2020). Efficiency analysis of underground pumped storage hydropower plants. Journal of Energy Storage, 28, 101234.
  • Wu, Y., Zhang, T., Chen, K., & Yi, L. (2020). A risk assessment framework of seawater pumped hydro storage project in China under three typical public-private partnership management modes. Journal of energy storage, 32, 101753.
  • Simão, M., & Ramos, H. M. (2020). Hybrid pumped hydro storage energy solutions towards wind and PV integration: Improvement on flexibility, reliability and energy costs. Water, 12(9), 2457.
  • Javed, M. S., Ma, T., Jurasz, J., & Amin, M. Y. (2020). Solar and wind power generation systems with pumped hydro storage: Review and future perspectives. Renewable Energy, 148, 176-192.
  • Zhang, M. Y., Chen, J. J., Yang, Z. J., Peng, K., Zhao, Y. L., & Zhang, X. H. (2021). Stochastic day-ahead scheduling of irrigation system integrated agricultural microgrid with pumped storage and uncertain wind power. Energy, 237, 121638.
  • Bueno, C., & Carta, J. A. (2006). Wind powered pumped hydro storage systems, a means of increasing the penetration of renewable energy in the Canary Islands. Renewable and sustainable energy reviews, 10(4), 312-340.
  • Mousavi, N., Kothapalli, G., Habibi, D., Lachowicz, S. W., & Moghaddam, V. (2020). A real-time energy management strategy for pumped hydro storage systems in farmhouses. Journal of Energy Storage, 32, 101928.
  • Bhayo, B. A., Al-Kayiem, H. H., Gilani, S. I., & Ismail, F. B. (2020). Power management optimization of hybrid solar photovoltaic-battery integrated with pumped-hydro-storage system for standalone electricity generation. Energy Conversion and Management, 215, 112942.
  • El-Jamal, G., Ghandour, M., Ibrahim, H., & Assi, A. (2014, November). Technical feasibility study of solar-pumped hydro storage in Lebanon. In International Conference on Renewable Energies for Developing Countries 2014 (pp. 23-28). IEEE.
  • Nyeche, E. N., & Diemuodeke, E. O. (2020). Modelling and optimisation of a hybrid PV-wind turbine-pumped hydro storage energy system for mini-grid application in coastline communities. Journal of cleaner production, 250, 119578.
  • Ma, T., Yang, H., Lu, L., & Peng, J. (2014). Technical feasibility study on a standalone hybrid solar-wind system with pumped hydro storage for a remote island in Hong Kong. Renewable energy, 69, 7-15.
  • Petrollese, M., Seche, P., & Cocco, D. (2019). Analysis and optimization of solar-pumped hydro storage systems integrated in water supply networks. Energy, 189, 116176.
  • Morabito, A., & Hendrick, P. (2019). Pump as turbine applied to micro energy storage and smart water grids: A case study. Applied energy, 241, 567-579.
  • Kusakana, K. (2019). Optimal electricity cost minimization of a grid-interactive Pumped Hydro Storage using ground water in a dynamic electricity pricing environment. Energy Reports, 5, 159-169.
  • Liu, K., Hu, W., Xu, X., Huang, Q., Zhang, Z., & Chen, Z. (2019). Optimized Operation of Photovoltaic and Pumped Hydro Storage Hybrid Energy System in the Electricity Market. In 2019 IEEE Innovative Smart Grid Technologies-Asia (ISGT Asia), (pp. 4306-4311).
  • Aburub, H., Basnet, S., & Jewell, W. T. (2019). On the use of adjustable-speed pumped hydro storage operation in the US electricity market. Journal of Energy Storage, 23, 495-503.
  • Akkaş, Ö. P., Arıkan, Y., & Çam, E. (2018). Elektrik Piyasasında Sanal Güç Santrali İşletiminin Optimizasyonu için Modelleme Önerisi. International Journal of Engineering Research and Development, 10 (3), 12-19.
  • Anilkumar, T. T., Simon, S. P., & Padhy, N. P. (2017). Residential electricity cost minimization model through open well-pico turbine pumped storage system. Applied energy, 195, 23-35..

An Evaluation of Pumped Hydroelectric Storage Systems

Year 2022, Volume: 6 Issue: 2, 205 - 214, 30.12.2022
https://doi.org/10.46460/ijiea.1074300

Abstract

In smart grids, storage systems are needed to increase the number of renewable energy sources connected to distribution systems and to ensure the continuity of energy. By supporting the system elements, energy storage can provide many services such as energy time shifting, interruption control, ensuring continuity in transmission and power quality improvements. In smart grid applications, difficulties are encountered in energy storage due to various problems such as charge/discharge, safety, size and cost. For this reason, energy storage systems should be developed for energy capacity, control and protection that can increase storage performance. Since there are interruptions and waves in renewable energy sources such as wind and solar, batteries are used for storage. In order to expand the use of clean energy and to ensure energy continuity, mechanical storage methods in large powerful systems have been emphasized. Storage studies have been carried out to increase efficiency, provide flexibility in electrical systems, reduce costs and improve storage time, and reduce power fluctuations. In this study, pumped hydroelectric storage plants, which is one of the storage methods, were examined. Advantages and disadvantages of pumped storage hydroelectric system are mentioned and hybrid pumped hydro storage is explained. Its economic contribution is also briefly mentioned. This storage method of PHES has also been found to be hybrid systems that can be connected to variable speed turbines, groundwater, seawater and renewable energies to increase efficiency, reduce costs and save space. Among these systems, it has been observed that the system in which solar and wind are used as a hybrid is also advantageous in providing high profitability in the energy market. Thanks to its integration with the sun and wind, carbon emissions are reduced.

References

  • Barbour, E., Wilson, I. G., Radcliffe, J., Ding, Y., & Li, Y. (2016). A review of pumped hydro energy storage development in significant international electricity markets. Renewable and sustainable energy reviews, 61, 421-432..
  • Vilanova, M. R. N., Flores, A. T., & Balestieri, J. A. P. (2020). Pumped hydro storage plants: a review. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 42(8), 1-14..
  • Blakers, A., Stocks, M., Lu, B., & Cheng, C. (2021). A review of pumped hydro energy storage. Progress in Energy, 3(2), 022003..
  • Kocaman, B. (2013). Akıllı şebekeler ve mikro şebekelerde enerji depolama teknolojileri. Bitlis Eren Üniversitesi Fen Bilimleri Dergisi, 2(1), 119-127..
  • McIlwaine, N., Foley, A. M., Morrow, D. J., Al Kez, D., Zhang, C., Lu, X., & Best, R. J. (2021). A state-of-the-art techno-economic review of distributed and embedded energy storage for energy systems. Energy, 229, 120461.
  • Punys, P., Baublys, R., Kasiulis, E., Vaisvila, A., Pelikan, B., & Steller, J. (2013). Assessment of renewable electricity generation by pumped storage power plants in EU Member States. Renewable and Sustainable Energy Reviews, 26, 190-200.
  • Ali, S., Stewart, R. A., & Sahin, O. (2021). Drivers and barriers to the deployment of pumped hydro energy storage applications: Systematic literature review. Cleaner Engineering and Technology, 5, 100281..
  • Nehrir, M. H., Wang, C., Strunz, K., Aki, H., Ramakumar, R., Bing, J., ... & Salameh, Z. (2011). A review of hybrid renewable/alternative energy systems for electric power generation: Configurations, control, and applications. IEEE transactions on sustainable energy, 2(4), 392-403.
  • Aktas, A., Erhan, K., Özdemir, S., & Özdemir, E. (2018). Dynamic energy management for photovoltaic power system including hybrid energy storage in smart grid applications. Energy, 162, 72-82.
  • Faisal, M., Hannan, M. A., Ker, P. J., Hussain, A., Mansor, M. B., & Blaabjerg, F. (2018). Review of energy storage system technologies in microgrid applications: Issues and challenges. Ieee Access, 6, 35143-35164.
  • Babu, T. S., Vasudevan, K. R., Ramachandaramurthy, V. K., Sani, S. B., Chemud, S., & Lajim, R. M. (2020). A comprehensive review of hybrid energy storage systems: Converter topologies, control strategies and future prospects. IEEE Access, 8, 148702-148721.
  • Mousavi, N., Kothapalli, G., Habibi, D., Lachowicz, S. W., & Moghaddam, V. (2020). A real-time energy management strategy for pumped hydro storage systems in farmhouses. Journal of Energy Storage, 32, 101928.
  • Tian, M. W., Yan, S. R., Tian, X. X., Nojavan, S., & Jermsittiparsert, K. (2020). Risk and profit-based bidding and offering strategies for pumped hydro storage in the energy market. Journal of Cleaner Production, 256, 120715.
  • Gundu, V., & Simon, S. P. (2020). A novel energy routing technique with hybrid energy storage for residential electricity cost minimization in a smart distribution network. Energy sources, part A: Recovery, utilization, and environmental effects, 1-18.
  • Al-Masri, H. M., Magableh, S. K., Abuelrub, A., Saadeh, O., & Ehsani, M. (2020). Impact of different photovoltaic models on the design of a combined solar array and pumped hydro storage system. Applied Sciences, 10(10), 3650.
  • Bagheri‐Sanjareh, M., Nazari, M. H., & Hosseinian, S. H. (2021). Energy management of islanded microgrid by coordinated application of thermal and electrical energy storage systems. International Journal of Energy Research, 45(4), 5369-5385.
  • Kutucu, N., Terzi, Ü. K., & Ayirga, H. Y. (2017, April). Technical and economic analysis of energy storage systems in smart grids. In 2017 5th International Istanbul Smart Grid and Cities Congress and Fair (ICSG) (pp. 166-170). IEEE.
  • Rehman, S., Al-Hadhrami, L. M., & Alam, M. M. (2015). Pumped hydro energy storage system: A technological review. Renewable and Sustainable Energy Reviews, 44, 586-598.
  • Pärnamäe, R., Gurreri, L., Post, J., van Egmond, W. J., Culcasi, A., Saakes, M., ... & Tedesco, M. (2020). The acid–base flow battery: Sustainable energy storage via reversible water dissociation with bipolar membranes. Membranes, 10(12), 409.
  • Yang, C. J. (2016). Pumped hydroelectric storage. In Storing Energy (pp. 25-38). Elsevier.
  • Gürsakal, H., & Uyumaz, A. (2021). Pompaj Depolamalı Hidroelektrik Santrallerin Optimizasyonunda Karlılık Analizi Ve Çalışma Süresi Tayini. Mühendislik Bilimleri ve Tasarım Dergisi, 9(2), 436-452.
  • Guittet, M., Capezzali, M., Gaudard, L., Romerio, F., Vuille, F., & Avellan, F. (2016). Study of the drivers and asset management of pumped-storage power plants historical and geographical perspective. Energy, 111, 560-579.
  • Chauhan, A., & Saini, R. P. (2014). A review on Integrated Renewable Energy System based power generation for stand-alone applications: Configurations, storage options, sizing methodologies and control. Renewable and Sustainable Energy Reviews, 38, 99-120.
  • Ünver, Ü., Bilgin, H., & Güven, A. (2015). Pompaj depolamalı hidroelektrik sistemler. Mühendis ve Makina, 56 (663), 57-64.
  • Zhao, H., Wu, Q., Hu, S., Xu, H., & Rasmussen, C. N. (2015). Review of energy storage system for wind power integration support. Applied energy, 137, 545-553.
  • Chen, H., Cong, T. N., Yang, W., Tan, C., Li, Y., & Ding, Y. (2009). Progress in electrical energy storage system: A critical review. Progress in natural science, 19(3), 291-312.
  • Stocks, M., Stocks, R., Lu, B., Cheng, C., & Blakers, A. (2021). Global atlas of closed-loop pumped hydro energy storage. Joule, 5(1), 270-284.
  • Barbour, E., Wilson, I. G., Radcliffe, J., Ding, Y., & Li, Y. (2016). A review of pumped hydro energy storage development in significant international electricity markets. Renewable and sustainable energy reviews, 61, 421-432.
  • Deane, J. P., Gallachóir, B. Ó., & McKeogh, E. J. (2010). Techno-economic review of existing and new pumped hydro energy storage plant. Renewable and Sustainable Energy Reviews, 14(4), 1293-1302.
  • Punys, P., Baublys, R., Kasiulis, E., Vaisvila, A., Pelikan, B., & Steller, J. (2013). Assessment of renewable electricity generation by pumped storage power plants in EU Member States. Renewable and Sustainable Energy Reviews, 26, 190-200.
  • Yıldız, C., & Şekkeli, M. (2016). Türkiye gün öncesi elektrik piyasasında rüzgar enerjisi ve pompaj depolamalı hidroelektrik santral için optimum teklif oluşturulması. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, 22(5), 361-366.
  • Makhdoomi, S., & Askarzadeh, A. (2020). Daily performance optimization of a grid-connected hybrid system composed of photovoltaic and pumped hydro storage (PV/PHS). Renewable Energy, 159, 272-285.
  • Kabalcı, E., Bayındır R., & Tür, M.R. (2021). Mikroşebekeler ve dağıtık üretim sistemleri. Ankara: Nobel Akademik Yayıncılık
  • Valavi, M., & Nysveen, A. (2018). Variable-speed operation of hydropower plants: A look at the past, present, and future. IEEE Industry Applications Magazine, 24(5), 18-27.
  • Pujades, E., Orban, P., Archambeau, P., Erpicum, S., & Dassargues, A. (2018). Numerical study of the Martelange mine to be used as underground reservoir for constructing an Underground Pumped Storage Hydropower plant. Advances in Geosciences, 45, 51-56.
  • Menéndez, J., Fernández-Oro, J. M., Galdo, M., & Loredo, J. (2020). Efficiency analysis of underground pumped storage hydropower plants. Journal of Energy Storage, 28, 101234.
  • Wu, Y., Zhang, T., Chen, K., & Yi, L. (2020). A risk assessment framework of seawater pumped hydro storage project in China under three typical public-private partnership management modes. Journal of energy storage, 32, 101753.
  • Simão, M., & Ramos, H. M. (2020). Hybrid pumped hydro storage energy solutions towards wind and PV integration: Improvement on flexibility, reliability and energy costs. Water, 12(9), 2457.
  • Javed, M. S., Ma, T., Jurasz, J., & Amin, M. Y. (2020). Solar and wind power generation systems with pumped hydro storage: Review and future perspectives. Renewable Energy, 148, 176-192.
  • Zhang, M. Y., Chen, J. J., Yang, Z. J., Peng, K., Zhao, Y. L., & Zhang, X. H. (2021). Stochastic day-ahead scheduling of irrigation system integrated agricultural microgrid with pumped storage and uncertain wind power. Energy, 237, 121638.
  • Bueno, C., & Carta, J. A. (2006). Wind powered pumped hydro storage systems, a means of increasing the penetration of renewable energy in the Canary Islands. Renewable and sustainable energy reviews, 10(4), 312-340.
  • Mousavi, N., Kothapalli, G., Habibi, D., Lachowicz, S. W., & Moghaddam, V. (2020). A real-time energy management strategy for pumped hydro storage systems in farmhouses. Journal of Energy Storage, 32, 101928.
  • Bhayo, B. A., Al-Kayiem, H. H., Gilani, S. I., & Ismail, F. B. (2020). Power management optimization of hybrid solar photovoltaic-battery integrated with pumped-hydro-storage system for standalone electricity generation. Energy Conversion and Management, 215, 112942.
  • El-Jamal, G., Ghandour, M., Ibrahim, H., & Assi, A. (2014, November). Technical feasibility study of solar-pumped hydro storage in Lebanon. In International Conference on Renewable Energies for Developing Countries 2014 (pp. 23-28). IEEE.
  • Nyeche, E. N., & Diemuodeke, E. O. (2020). Modelling and optimisation of a hybrid PV-wind turbine-pumped hydro storage energy system for mini-grid application in coastline communities. Journal of cleaner production, 250, 119578.
  • Ma, T., Yang, H., Lu, L., & Peng, J. (2014). Technical feasibility study on a standalone hybrid solar-wind system with pumped hydro storage for a remote island in Hong Kong. Renewable energy, 69, 7-15.
  • Petrollese, M., Seche, P., & Cocco, D. (2019). Analysis and optimization of solar-pumped hydro storage systems integrated in water supply networks. Energy, 189, 116176.
  • Morabito, A., & Hendrick, P. (2019). Pump as turbine applied to micro energy storage and smart water grids: A case study. Applied energy, 241, 567-579.
  • Kusakana, K. (2019). Optimal electricity cost minimization of a grid-interactive Pumped Hydro Storage using ground water in a dynamic electricity pricing environment. Energy Reports, 5, 159-169.
  • Liu, K., Hu, W., Xu, X., Huang, Q., Zhang, Z., & Chen, Z. (2019). Optimized Operation of Photovoltaic and Pumped Hydro Storage Hybrid Energy System in the Electricity Market. In 2019 IEEE Innovative Smart Grid Technologies-Asia (ISGT Asia), (pp. 4306-4311).
  • Aburub, H., Basnet, S., & Jewell, W. T. (2019). On the use of adjustable-speed pumped hydro storage operation in the US electricity market. Journal of Energy Storage, 23, 495-503.
  • Akkaş, Ö. P., Arıkan, Y., & Çam, E. (2018). Elektrik Piyasasında Sanal Güç Santrali İşletiminin Optimizasyonu için Modelleme Önerisi. International Journal of Engineering Research and Development, 10 (3), 12-19.
  • Anilkumar, T. T., Simon, S. P., & Padhy, N. P. (2017). Residential electricity cost minimization model through open well-pico turbine pumped storage system. Applied energy, 195, 23-35..
There are 53 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Review
Authors

Ayşenur Oymak 0000-0001-7281-6189

Mehmet Rıda Tür 0000-0001-5688-4624

Publication Date December 30, 2022
Submission Date February 18, 2022
Published in Issue Year 2022 Volume: 6 Issue: 2

Cite

APA Oymak, A., & Tür, M. R. (2022). An Evaluation of Pumped Hydroelectric Storage Systems. International Journal of Innovative Engineering Applications, 6(2), 205-214. https://doi.org/10.46460/ijiea.1074300
AMA Oymak A, Tür MR. An Evaluation of Pumped Hydroelectric Storage Systems. IJIEA. December 2022;6(2):205-214. doi:10.46460/ijiea.1074300
Chicago Oymak, Ayşenur, and Mehmet Rıda Tür. “An Evaluation of Pumped Hydroelectric Storage Systems”. International Journal of Innovative Engineering Applications 6, no. 2 (December 2022): 205-14. https://doi.org/10.46460/ijiea.1074300.
EndNote Oymak A, Tür MR (December 1, 2022) An Evaluation of Pumped Hydroelectric Storage Systems. International Journal of Innovative Engineering Applications 6 2 205–214.
IEEE A. Oymak and M. R. Tür, “An Evaluation of Pumped Hydroelectric Storage Systems”, IJIEA, vol. 6, no. 2, pp. 205–214, 2022, doi: 10.46460/ijiea.1074300.
ISNAD Oymak, Ayşenur - Tür, Mehmet Rıda. “An Evaluation of Pumped Hydroelectric Storage Systems”. International Journal of Innovative Engineering Applications 6/2 (December 2022), 205-214. https://doi.org/10.46460/ijiea.1074300.
JAMA Oymak A, Tür MR. An Evaluation of Pumped Hydroelectric Storage Systems. IJIEA. 2022;6:205–214.
MLA Oymak, Ayşenur and Mehmet Rıda Tür. “An Evaluation of Pumped Hydroelectric Storage Systems”. International Journal of Innovative Engineering Applications, vol. 6, no. 2, 2022, pp. 205-14, doi:10.46460/ijiea.1074300.
Vancouver Oymak A, Tür MR. An Evaluation of Pumped Hydroelectric Storage Systems. IJIEA. 2022;6(2):205-14.