Research Article
BibTex RIS Cite

Investigation of Polylactic Acid (PLA) / Titanium Carbide (TiC) Nanocomposite Films Gamma Ray Shielding Properties

Year 2022, Volume: 6 Issue: 2, 293 - 296, 30.12.2022
https://doi.org/10.46460/ijiea.1143273

Abstract

In this study, gamma rays absorption properties of Polylactic Acid (PLA)/Titanium Carbide (TiC) nanocomposite films produced by containing 5% TiC were investigated. In applications where radioactive sources such as industry and medical are used, protection from the harmful effects of radiation is very important. Researches on materials to be used in shielding as an alternative to lead are becoming widespread. Comfortable, easily shaped, thin, durable, non-toxic to the environment and the user are the features sought in an ideal shield materials. For this purpose, the gamma ray absorption properties of the PLA/TiC nanocomposite material and its effect on radiation shielding were investigated. The linear attenuation coefficient value of the sample with different thicknesses was obtained with the NaI(TI) scintillation detector. A monochromatic gamma source, Cs-137 gamma radioisotope with 661.62 keV energy was used as the gamma radiation source. To determine the gamma ray shielding ability of materials Half value layer (HVL), tenth value layer (TVL) and radiation shielding efficiency (RPE) parameters of the material were calculated.

Thanks

The author would like to thank Dr. Ersin Pekdemir who scientific support and for experimental support.

References

  • Referans1 De Santis, M., Cesari, E., Nobili, E., Straface, G., Cavaliere, A.F., & Caruso, A. (2007). Radiation effects on development. Birth Defects Research Part C: Embryo Today, 81, 177-182.
  • Referans2 Silindir, M., & Özer, A. Y. (2009). Sterilization methods and the comparison of E-beam sterilization with gamma radiation sterilization. Fabad Journal of Pharmaceutical Sciences, 34 (1), 43.
  • Referans3 Kevin M. P., Giuseppe, S., Melvyn F., & Kathryn D. H. (2005). New insights on cell death from radiation exposure, The Lancet Oncology, 6 (7), 520-528.
  • Referans4 Rosen, E. M., Day, R., & Singh V. K. (2015). New approaches to radiation protection, Frontiers in Oncology,4, 2234-943X.
  • Referans5 Martin, J.E., (2013). Physics for radiation protection. 3. upd.
  • Referans6 Yıldız, N. Y., (2019). Gamma-ray shielding properties of lithium borate glass doped with colemanit mineral, BEU Journal of Science, 8 (3), 762-771.
  • Referans7 McCaffrey, J. P., Shen, H., Downton, B., & Mainegra‐Hing, E. (2007). Radiation attenuation by lead and nonlead materials used in radiation shielding garments. Medical physics, 34(2), 530-537.
  • Referans8 Mansy, M. S., Lasheen, Y. F., Breky, M.M.E., & Selim, Y. (2021). Experimental and theoretical investigation of Pb–Sb alloys as a gamma-radiation shielding material. Radiation Physics and Chemistry, 183, 109416.
  • Referans9 Trubey, D. K., Eisenhauer, C. M., Foderaro, A., Gopinath, D. V., Harima, Y., Hubbell, J. H., & Shure, K. (1991). Gamma-ray attenuation coefficients and buildup factors for engineering materials. Report ANSI/ANS 6.4.3.
  • Referans10 McAlister, D.R., (2012). Gamma ray attenuation properties of common shielding materials. University Lane Lisle, USA.
  • Referans11 Canel E. (2020). A Study on the gamma-ray attenuation parameters of some commercial salt samples. Sakarya University Journal of Science, 24(2), 412-423.
  • Referans12 Tsoulfanidis, N. (1995). Measurement and detection of radiation. Taylor & Francis Publisher, London.
  • Referans13 Singh, T., Kaur, A., Sharma, J., Singh, P. S. (2018). Gamma rays’ shielding parameters for some Pb-Cu binary alloys, Engineering Science and Technology, 21(5), 1078-1085.
  • Referans14 Aktas, B., Yalcin, S., Dogru, K., Uzunoglu, Z., & Yilmaz, D. (2019). Structural and radiation shielding properties of chromium oxide doped borosilicate glass. Radiation Physics and Chemistry, 156, 144-149.
  • Referans15 Sayyed, M.I., Tekin, H.O., M. M., Taki, Mhareb, M.H.A., Agar, O., Şakar, E., & Kaky, K. M. (2020). Bi2O3-B2O3-ZnO-BaO-Li2O glass system for gamma ray shielding applications. Optik, 201, 0030-4026.
  • Referans16 Agar, O. (2018). Study on gamma ray shielding performance of concretes doped with natural sepiolite mineral. Radiochimica Acta, 106(12), 1009-1016.
  • Referans17 Soylu, H.M., Yurt Lambrecht, F. & Ersöz, O.A. (2015). Gamma radiation shielding efficiency of a new lead-free composite material. Journal of Radioanalytical and Nuclear Chemistry, 305, 529–534.

Polilaktik Asit (PLA) / Titanyum Karbür (TiC) Nanokompozit Filmin Gama Işını Zırhlama Özelliklerinin İncelenmesi

Year 2022, Volume: 6 Issue: 2, 293 - 296, 30.12.2022
https://doi.org/10.46460/ijiea.1143273

Abstract

Bu çalışmada, %5 TiC içeren Polilaktik Asit (PLA)/Titanyum Karbür (TiC) nanokompozit filmlerin gama ışınları absorpsiyon özellikleri incelenmiştir. Özellikle endüstri ve medikal gibi radyoaktif kaynakların kullanıldığı uygulamalarda radyasyonun zararlı etkilerinden korunma oldukça önemlidir. Kurşuna alternatif olarak zırhlamada kullanılacak malzeme araştırmaları yaygınlaşmaktadır. Kolay şekil alabilen, ince, konforlu, dayanıklı, toksik açıdan çevreye ve kullanıcıya zarar vermemesi ideal bir zırhlayıcı malzemede aranan özelliklerdir. Bu amaçla, üretilen PLA/TiC nanokompozit malzemesinin gama ışınlarını soğurma özellikleri ve radyasyon zırhlamasındaki etkisi araştırılmıştır. Gama radyasyon kaynağı olarak monokromatik bir gama kaynağı olan 661.62 keV enerjili 137Cs gama radyoizotopu kullanıldı. NaI(TI) sintilayon dedektörü ile farklı kalınlıklardaki numunenin soğurma katsayısı değeri elde edildi. Malzemelerin gama ışını zırhlama kabiliyetini belirlemek için, malzemenin Yarı değer katmanı (HVL), onuncu değer katmanı (TVL) ve radyasyon koruma verimliliği (RPE) parametreleri hesaplanmıştır.

References

  • Referans1 De Santis, M., Cesari, E., Nobili, E., Straface, G., Cavaliere, A.F., & Caruso, A. (2007). Radiation effects on development. Birth Defects Research Part C: Embryo Today, 81, 177-182.
  • Referans2 Silindir, M., & Özer, A. Y. (2009). Sterilization methods and the comparison of E-beam sterilization with gamma radiation sterilization. Fabad Journal of Pharmaceutical Sciences, 34 (1), 43.
  • Referans3 Kevin M. P., Giuseppe, S., Melvyn F., & Kathryn D. H. (2005). New insights on cell death from radiation exposure, The Lancet Oncology, 6 (7), 520-528.
  • Referans4 Rosen, E. M., Day, R., & Singh V. K. (2015). New approaches to radiation protection, Frontiers in Oncology,4, 2234-943X.
  • Referans5 Martin, J.E., (2013). Physics for radiation protection. 3. upd.
  • Referans6 Yıldız, N. Y., (2019). Gamma-ray shielding properties of lithium borate glass doped with colemanit mineral, BEU Journal of Science, 8 (3), 762-771.
  • Referans7 McCaffrey, J. P., Shen, H., Downton, B., & Mainegra‐Hing, E. (2007). Radiation attenuation by lead and nonlead materials used in radiation shielding garments. Medical physics, 34(2), 530-537.
  • Referans8 Mansy, M. S., Lasheen, Y. F., Breky, M.M.E., & Selim, Y. (2021). Experimental and theoretical investigation of Pb–Sb alloys as a gamma-radiation shielding material. Radiation Physics and Chemistry, 183, 109416.
  • Referans9 Trubey, D. K., Eisenhauer, C. M., Foderaro, A., Gopinath, D. V., Harima, Y., Hubbell, J. H., & Shure, K. (1991). Gamma-ray attenuation coefficients and buildup factors for engineering materials. Report ANSI/ANS 6.4.3.
  • Referans10 McAlister, D.R., (2012). Gamma ray attenuation properties of common shielding materials. University Lane Lisle, USA.
  • Referans11 Canel E. (2020). A Study on the gamma-ray attenuation parameters of some commercial salt samples. Sakarya University Journal of Science, 24(2), 412-423.
  • Referans12 Tsoulfanidis, N. (1995). Measurement and detection of radiation. Taylor & Francis Publisher, London.
  • Referans13 Singh, T., Kaur, A., Sharma, J., Singh, P. S. (2018). Gamma rays’ shielding parameters for some Pb-Cu binary alloys, Engineering Science and Technology, 21(5), 1078-1085.
  • Referans14 Aktas, B., Yalcin, S., Dogru, K., Uzunoglu, Z., & Yilmaz, D. (2019). Structural and radiation shielding properties of chromium oxide doped borosilicate glass. Radiation Physics and Chemistry, 156, 144-149.
  • Referans15 Sayyed, M.I., Tekin, H.O., M. M., Taki, Mhareb, M.H.A., Agar, O., Şakar, E., & Kaky, K. M. (2020). Bi2O3-B2O3-ZnO-BaO-Li2O glass system for gamma ray shielding applications. Optik, 201, 0030-4026.
  • Referans16 Agar, O. (2018). Study on gamma ray shielding performance of concretes doped with natural sepiolite mineral. Radiochimica Acta, 106(12), 1009-1016.
  • Referans17 Soylu, H.M., Yurt Lambrecht, F. & Ersöz, O.A. (2015). Gamma radiation shielding efficiency of a new lead-free composite material. Journal of Radioanalytical and Nuclear Chemistry, 305, 529–534.
There are 17 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Articles
Authors

Mücahit Yılmaz 0000-0003-0048-2233

Publication Date December 30, 2022
Submission Date July 12, 2022
Published in Issue Year 2022 Volume: 6 Issue: 2

Cite

APA Yılmaz, M. (2022). Investigation of Polylactic Acid (PLA) / Titanium Carbide (TiC) Nanocomposite Films Gamma Ray Shielding Properties. International Journal of Innovative Engineering Applications, 6(2), 293-296. https://doi.org/10.46460/ijiea.1143273
AMA Yılmaz M. Investigation of Polylactic Acid (PLA) / Titanium Carbide (TiC) Nanocomposite Films Gamma Ray Shielding Properties. IJIEA. December 2022;6(2):293-296. doi:10.46460/ijiea.1143273
Chicago Yılmaz, Mücahit. “Investigation of Polylactic Acid (PLA) / Titanium Carbide (TiC) Nanocomposite Films Gamma Ray Shielding Properties”. International Journal of Innovative Engineering Applications 6, no. 2 (December 2022): 293-96. https://doi.org/10.46460/ijiea.1143273.
EndNote Yılmaz M (December 1, 2022) Investigation of Polylactic Acid (PLA) / Titanium Carbide (TiC) Nanocomposite Films Gamma Ray Shielding Properties. International Journal of Innovative Engineering Applications 6 2 293–296.
IEEE M. Yılmaz, “Investigation of Polylactic Acid (PLA) / Titanium Carbide (TiC) Nanocomposite Films Gamma Ray Shielding Properties”, IJIEA, vol. 6, no. 2, pp. 293–296, 2022, doi: 10.46460/ijiea.1143273.
ISNAD Yılmaz, Mücahit. “Investigation of Polylactic Acid (PLA) / Titanium Carbide (TiC) Nanocomposite Films Gamma Ray Shielding Properties”. International Journal of Innovative Engineering Applications 6/2 (December 2022), 293-296. https://doi.org/10.46460/ijiea.1143273.
JAMA Yılmaz M. Investigation of Polylactic Acid (PLA) / Titanium Carbide (TiC) Nanocomposite Films Gamma Ray Shielding Properties. IJIEA. 2022;6:293–296.
MLA Yılmaz, Mücahit. “Investigation of Polylactic Acid (PLA) / Titanium Carbide (TiC) Nanocomposite Films Gamma Ray Shielding Properties”. International Journal of Innovative Engineering Applications, vol. 6, no. 2, 2022, pp. 293-6, doi:10.46460/ijiea.1143273.
Vancouver Yılmaz M. Investigation of Polylactic Acid (PLA) / Titanium Carbide (TiC) Nanocomposite Films Gamma Ray Shielding Properties. IJIEA. 2022;6(2):293-6.