| APA |
Almazaydeh, L., Elleithy, K., Faezipour, M., Ocbagabir, H. (2016). SVM-Based Sleep Apnea Identification Using Optimal RR-Interval Features of the ECG Signal. International Journal of Intelligent Systems and Applications in Engineering, 4(1), 1-4. https://doi.org/10.18201/ijisae.79075
|
|
| AMA |
Almazaydeh L, Elleithy K, Faezipour M, Ocbagabir H. SVM-Based Sleep Apnea Identification Using Optimal RR-Interval Features of the ECG Signal. International Journal of Intelligent Systems and Applications in Engineering. March 2016;4(1):1-4. doi:10.18201/ijisae.79075
|
|
| Chicago |
Almazaydeh, Laiali, Khaled Elleithy, Miad Faezipour, and Helen Ocbagabir. “SVM-Based Sleep Apnea Identification Using Optimal RR-Interval Features of the ECG Signal”. International Journal of Intelligent Systems and Applications in Engineering 4, no. 1 (March 2016): 1-4. https://doi.org/10.18201/ijisae.79075.
|
|
| EndNote |
Almazaydeh L, Elleithy K, Faezipour M, Ocbagabir H (March 1, 2016) SVM-Based Sleep Apnea Identification Using Optimal RR-Interval Features of the ECG Signal. International Journal of Intelligent Systems and Applications in Engineering 4 1 1–4.
|
|
| IEEE |
L. Almazaydeh, K. Elleithy, M. Faezipour, and H. Ocbagabir, “SVM-Based Sleep Apnea Identification Using Optimal RR-Interval Features of the ECG Signal”, International Journal of Intelligent Systems and Applications in Engineering, vol. 4, no. 1, pp. 1–4, 2016, doi: 10.18201/ijisae.79075.
|
|
| ISNAD |
Almazaydeh, Laiali et al. “SVM-Based Sleep Apnea Identification Using Optimal RR-Interval Features of the ECG Signal”. International Journal of Intelligent Systems and Applications in Engineering 4/1 (March2016), 1-4. https://doi.org/10.18201/ijisae.79075.
|
|
| JAMA |
Almazaydeh L, Elleithy K, Faezipour M, Ocbagabir H. SVM-Based Sleep Apnea Identification Using Optimal RR-Interval Features of the ECG Signal. International Journal of Intelligent Systems and Applications in Engineering. 2016;4:1–4.
|
|
| MLA |
Almazaydeh, Laiali et al. “SVM-Based Sleep Apnea Identification Using Optimal RR-Interval Features of the ECG Signal”. International Journal of Intelligent Systems and Applications in Engineering, vol. 4, no. 1, 2016, pp. 1-4, doi:10.18201/ijisae.79075.
|
|
| Vancouver |
Almazaydeh L, Elleithy K, Faezipour M, Ocbagabir H. SVM-Based Sleep Apnea Identification Using Optimal RR-Interval Features of the ECG Signal. International Journal of Intelligent Systems and Applications in Engineering. 2016;4(1):1-4.
|
|