Research Article
BibTex RIS Cite

A Note on Background Subtraction by Utilizing a New Tensor Approach

Year 2016, Volume: 4 Issue: Special Issue-1, 87 - 91, 26.12.2016
https://doi.org/10.18201/ijisae.267154

Abstract

This study deals with determining the foreground region by background
subtraction based on a new tensor decomposition method. With this aim, the
concept of Common Matrix Approach (CMA) is utilized with a purpose of
background modelling. The performance of proposed method is validated by making
experiments on real videos provided by Wallflower dataset. The obtained results
are compared with well-known methods based on subjective on objective
evaluation measures. The obtained good results indicate that using the CMA
algorithm for background modelling is a simple and effective technique in terms
computational cost and implementation. As an eventual result, we have observed
that the superior results are determined on complex backgrounds including
dynamic objects and illumination variation in image sets.

References

  • [1] T. Bouwmans, Traditional and recent approaches in background modeling for foreground detection: An overview, Computer Science Review, 11 (2014) 31-66.
  • [2] D. Dushnik, A. Schclar, A. Averbuch, Video segmentation via diffusion bases, arXiv preprint arXiv:1305.0218, (2013).
  • [3] W. Hu, X. Li, X. Zhang, X. Shi, S. Maybank, Z. Zhang, Incremental tensor subspace learning and its applications to foreground segmentation and tracking, International Journal of Computer Vision, 91 (2011) 303-327.
  • [4] M.G. Krishna, V.M. Aradhya, M. Ravishankar, D.R. Babu, LoPP: locality preserving projections for moving object detection, Procedia Technology, 4 (2012) 624-628.
  • [5] Y. Li, J. Yan, Y. Zhou, J. Yang, Optimum subspace learning and error correction for tensors, Computer Vision–ECCV 2010, Springer2010, pp. 790-803.
  • [6] Z. Zhang, G. Ely, S. Aeron, N. Hao, M. Kilmer, Novel methods for multilinear data completion and de-noising based on tensor-SVD, Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition2014, pp. 3842-3849.
  • [7] S. Ergin, S. Çakir, Ö.N. Gerek, M.B. Gülmezoğlu, A new implementation of common matrix approach using third-order tensors for face recognition, Expert Systems with Applications, 38 (2011) 3246-3251.
  • [8] K. Toyama, J. Krumm, B. Brumitt, B. Meyers, Wallflower: Principles and practice of background maintenance, Computer Vision, 1999. The Proceedings of the Seventh IEEE International Conference on, IEEE1999, pp. 255-261.
  • [9] Wallflower Dataset, http://research.microsoft.com/en-us/um/people/jckrumm/WallFlower/TestImages.htm.
  • [10] S. Ergin, M.B. Gulmezoglu, A novel framework for partition-based face recognition, International Journal of Innovative Computing Information and Control, 9 (2013) 1819-1834.
  • [11] S. Günal, S. Ergin, M.B. Gülmezoğlu, Ö.N. Gerek, On feature extraction for spam e-mail detection, Multimedia content representation, classification and security, Springer2006, pp. 635-642.
  • [12] K. Özkan, E. Seke, Image denoising using common vector approach, Image Processing, IET, 9 (2015) 709-715.
  • [13] K. Özkan, Ş. Işık, A novel multi-scale and multi-expert edge detector based on common vector approach, AEU-International Journal of Electronics and Communications, 69 (2015) 1272-1281.
  • [14] H. Cevikalp, M. Neamtu, M. Wilkes, A. Barkana, Discriminative common vectors for face recognition, IEEE Transactions on pattern analysis and machine intelligence, 27 (2005) 4-13.
  • [15] C.R. Wren, A. Azarbayejani, T. Darrell, A.P. Pentland, Pfinder: Real-time tracking of the human body, IEEE Transactions on pattern analysis and machine intelligence, 19 (1997) 780-785.
  • [16] C. Stauffer, W.E.L. Grimson, Adaptive background mixture models for real-time tracking, Computer Vision and Pattern Recognition, 1999. IEEE Computer Society Conference on., IEEE1999.
  • [17] A. Elgammal, D. Harwood, L. Davis, Non-parametric model for background subtraction, European conference on computer vision, Springer2000, pp. 751-767.
  • [18] N.M. Oliver, B. Rosario, A.P. Pentland, A bayesian computer vision system for modeling human interactions, IEEE transactions on pattern analysis and machine intelligence, 22 (2000) 831-843.
  • [19] D.-M. Tsai, S.-C. Lai, Independent component analysis-based background subtraction for indoor surveillance, IEEE Transactions on Image Processing, 18 (2009) 158-167.
  • [20] S.S. Bucak, B. Günsel, O. Gursoy, Incremental Non-negative Matrix Factorization for Dynamic Background Modelling, PRIS2007, pp. 107-116.
  • [21] X. Li, W. Hu, Z. Zhang, X. Zhang, Robust foreground segmentation based on two effective background models, Proceedings of the 1st ACM international conference on Multimedia information retrieval, ACM2008, pp. 223-228.
  • [22] T. Bouwmans, Subspace learning for background modeling: A survey, Recent Patents on Computer Science, 2 (2009) 223-234.
Year 2016, Volume: 4 Issue: Special Issue-1, 87 - 91, 26.12.2016
https://doi.org/10.18201/ijisae.267154

Abstract

References

  • [1] T. Bouwmans, Traditional and recent approaches in background modeling for foreground detection: An overview, Computer Science Review, 11 (2014) 31-66.
  • [2] D. Dushnik, A. Schclar, A. Averbuch, Video segmentation via diffusion bases, arXiv preprint arXiv:1305.0218, (2013).
  • [3] W. Hu, X. Li, X. Zhang, X. Shi, S. Maybank, Z. Zhang, Incremental tensor subspace learning and its applications to foreground segmentation and tracking, International Journal of Computer Vision, 91 (2011) 303-327.
  • [4] M.G. Krishna, V.M. Aradhya, M. Ravishankar, D.R. Babu, LoPP: locality preserving projections for moving object detection, Procedia Technology, 4 (2012) 624-628.
  • [5] Y. Li, J. Yan, Y. Zhou, J. Yang, Optimum subspace learning and error correction for tensors, Computer Vision–ECCV 2010, Springer2010, pp. 790-803.
  • [6] Z. Zhang, G. Ely, S. Aeron, N. Hao, M. Kilmer, Novel methods for multilinear data completion and de-noising based on tensor-SVD, Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition2014, pp. 3842-3849.
  • [7] S. Ergin, S. Çakir, Ö.N. Gerek, M.B. Gülmezoğlu, A new implementation of common matrix approach using third-order tensors for face recognition, Expert Systems with Applications, 38 (2011) 3246-3251.
  • [8] K. Toyama, J. Krumm, B. Brumitt, B. Meyers, Wallflower: Principles and practice of background maintenance, Computer Vision, 1999. The Proceedings of the Seventh IEEE International Conference on, IEEE1999, pp. 255-261.
  • [9] Wallflower Dataset, http://research.microsoft.com/en-us/um/people/jckrumm/WallFlower/TestImages.htm.
  • [10] S. Ergin, M.B. Gulmezoglu, A novel framework for partition-based face recognition, International Journal of Innovative Computing Information and Control, 9 (2013) 1819-1834.
  • [11] S. Günal, S. Ergin, M.B. Gülmezoğlu, Ö.N. Gerek, On feature extraction for spam e-mail detection, Multimedia content representation, classification and security, Springer2006, pp. 635-642.
  • [12] K. Özkan, E. Seke, Image denoising using common vector approach, Image Processing, IET, 9 (2015) 709-715.
  • [13] K. Özkan, Ş. Işık, A novel multi-scale and multi-expert edge detector based on common vector approach, AEU-International Journal of Electronics and Communications, 69 (2015) 1272-1281.
  • [14] H. Cevikalp, M. Neamtu, M. Wilkes, A. Barkana, Discriminative common vectors for face recognition, IEEE Transactions on pattern analysis and machine intelligence, 27 (2005) 4-13.
  • [15] C.R. Wren, A. Azarbayejani, T. Darrell, A.P. Pentland, Pfinder: Real-time tracking of the human body, IEEE Transactions on pattern analysis and machine intelligence, 19 (1997) 780-785.
  • [16] C. Stauffer, W.E.L. Grimson, Adaptive background mixture models for real-time tracking, Computer Vision and Pattern Recognition, 1999. IEEE Computer Society Conference on., IEEE1999.
  • [17] A. Elgammal, D. Harwood, L. Davis, Non-parametric model for background subtraction, European conference on computer vision, Springer2000, pp. 751-767.
  • [18] N.M. Oliver, B. Rosario, A.P. Pentland, A bayesian computer vision system for modeling human interactions, IEEE transactions on pattern analysis and machine intelligence, 22 (2000) 831-843.
  • [19] D.-M. Tsai, S.-C. Lai, Independent component analysis-based background subtraction for indoor surveillance, IEEE Transactions on Image Processing, 18 (2009) 158-167.
  • [20] S.S. Bucak, B. Günsel, O. Gursoy, Incremental Non-negative Matrix Factorization for Dynamic Background Modelling, PRIS2007, pp. 107-116.
  • [21] X. Li, W. Hu, Z. Zhang, X. Zhang, Robust foreground segmentation based on two effective background models, Proceedings of the 1st ACM international conference on Multimedia information retrieval, ACM2008, pp. 223-228.
  • [22] T. Bouwmans, Subspace learning for background modeling: A survey, Recent Patents on Computer Science, 2 (2009) 223-234.
There are 22 citations in total.

Details

Subjects Engineering
Journal Section Research Article
Authors

Şahin Işık

Kemal Özkan

Muzaffer Doğan This is me

Ömer Nezih Gerek

Publication Date December 26, 2016
Published in Issue Year 2016 Volume: 4 Issue: Special Issue-1

Cite

APA Işık, Ş., Özkan, K., Doğan, M., Gerek, Ö. N. (2016). A Note on Background Subtraction by Utilizing a New Tensor Approach. International Journal of Intelligent Systems and Applications in Engineering, 4(Special Issue-1), 87-91. https://doi.org/10.18201/ijisae.267154
AMA Işık Ş, Özkan K, Doğan M, Gerek ÖN. A Note on Background Subtraction by Utilizing a New Tensor Approach. International Journal of Intelligent Systems and Applications in Engineering. December 2016;4(Special Issue-1):87-91. doi:10.18201/ijisae.267154
Chicago Işık, Şahin, Kemal Özkan, Muzaffer Doğan, and Ömer Nezih Gerek. “A Note on Background Subtraction by Utilizing a New Tensor Approach”. International Journal of Intelligent Systems and Applications in Engineering 4, no. Special Issue-1 (December 2016): 87-91. https://doi.org/10.18201/ijisae.267154.
EndNote Işık Ş, Özkan K, Doğan M, Gerek ÖN (December 1, 2016) A Note on Background Subtraction by Utilizing a New Tensor Approach. International Journal of Intelligent Systems and Applications in Engineering 4 Special Issue-1 87–91.
IEEE Ş. Işık, K. Özkan, M. Doğan, and Ö. N. Gerek, “A Note on Background Subtraction by Utilizing a New Tensor Approach”, International Journal of Intelligent Systems and Applications in Engineering, vol. 4, no. Special Issue-1, pp. 87–91, 2016, doi: 10.18201/ijisae.267154.
ISNAD Işık, Şahin et al. “A Note on Background Subtraction by Utilizing a New Tensor Approach”. International Journal of Intelligent Systems and Applications in Engineering 4/Special Issue-1 (December 2016), 87-91. https://doi.org/10.18201/ijisae.267154.
JAMA Işık Ş, Özkan K, Doğan M, Gerek ÖN. A Note on Background Subtraction by Utilizing a New Tensor Approach. International Journal of Intelligent Systems and Applications in Engineering. 2016;4:87–91.
MLA Işık, Şahin et al. “A Note on Background Subtraction by Utilizing a New Tensor Approach”. International Journal of Intelligent Systems and Applications in Engineering, vol. 4, no. Special Issue-1, 2016, pp. 87-91, doi:10.18201/ijisae.267154.
Vancouver Işık Ş, Özkan K, Doğan M, Gerek ÖN. A Note on Background Subtraction by Utilizing a New Tensor Approach. International Journal of Intelligent Systems and Applications in Engineering. 2016;4(Special Issue-1):87-91.