BibTex RIS Cite

Rainfall estimation based on NAW approach using MSG-SEVIRI images: An application in north Algeria

Year 2015, Volume: 3 Issue: 1, 19 - 23, 13.01.2015
https://doi.org/10.18201/ijisae.85751

Abstract

In this work, we will adapt the NAW (Nagri, Adler and Wetzel) precipitation, estimation approach to the north Algeria events using the Meteosat Second Generation (MSG) satellite images. The tests are carried out on seven areas of northern Algeria: Sidi Bel Abbes, Oran Port, Algiers Port, Dar El Beida, Bedjaia, Jijel-Achouat and Annaba, in winter 2006. The NAW approach is applied by thresholding to temperature from 253 K. The validation is performed by comparaison the estimated rainfall to in situ measures collected by the National Office of Meteorology in Dar El Beida (Algeria). We use the infrared data (10.8µm channel) of SEVIRI sensor in this study. The results obtained indicate that the NAW approach gives satisfactory results for the rain rates: 4mm/h assigned to the coldest 10%, 2mm/h assigned to the next 40% and 0mm/h given to the remaining 50% of the area defined as cloud. The rain rate 8mm/h assigned to the coldest 10% of the pixels in the cloud applied for the convective clouds observed for tropical regions are not valid for the Algerian climate, especially for the stratiform clouds type.

References

  • X. Li and S. Gao (2011). Precipitation modeling and quantitative analysis. Springer Dordrecht. Pages. 240.
  • C. Prigent (2010). Precipitation retrieval from space: An overview. Comptes Rendus Geoscience. Vol. 342. Pages. 380–389.
  • T.T. Wilheit, A.T.C. Chang, M.S.V. Rao, E.B. Rodgers and J.S. Theon (1977). Satellite technique for quantitatively mapping rainfall rates over oceans. Journal of Applied Meteorology. Vol. 16. Pages. 551–560.
  • C. Kummerow, Y. Hong, W.S. Olson, S. Yang, R.F. Adler, J. McCollum, R. Ferraro, G. Petty, B.-B. Shin and T.T. Wilheit (2001). The evolution of the Goddard profiling algorithm (GPROF) for rainfall estimation from passive microwave sensors. Journal of Applied Meteorology. Vol. 39. Pages. 1801–1820.
  • P. Bauer, P. Amayenc, C.D. Kummerow and E.A. Smith (2001). Over-ocean rainfall retrieval from multisensor data of the Tropical Rainfall Measuring Mission. Part I: Design and evaluation of inversion databases. Journal of Atmospheric and Oceanic Technology. Vol. 18. Pages. 1315–1330.
  • P. Bauer (2001). Over-ocean rainfall retrieval from multisensor data of the Tropical Rainfall Measuring Mission. Part II: Algorithm implementation. Journal of Atmospheric and Oceanic Technology. Vol. 18. Pages. 1838–1855.
  • R.R. Ferraro, F. Weng, N. Grody, L. Zhao, H. Meng, C. Kongoli, P. Pellegrino, S. Qiu and C. Dean (2005). NOAA operational hydrological products derived from the AMSU. IEEE Transactions on Geoscience and Remote Sensing. Vol. 43. Pages. 1036–1049.
  • C.G. Griffith, W.L. Woodley, P.G. Grube, D.W. Martin, J. Stout and D.N. Sikdar (1978). Rain estimation from geosynchronous satellite imagery–visible and infrared studies. Monthly Weather Review. Vol. 106. Pages. 1153–1171.
  • C.G. Griffith (1987). Comparison of gauges and satellite rain estimates for the central United Sates during August 1979. Journal of Geophysical Research. Vol. 92. Pages. 9551–9566.
  • A.J. Negri, R.F. Adler and P.J. Wetzel (1984). Rain estimation from satellites: an estimation of the Griffith-Woodley Technique. Journal of Climate and Applied Meteorology. Vol. 23. Pages. 102–116.
  • R.F. Adler and A.J. Negri (1988). A satellite infrared technique to estimate tropical convective and stratiform rainfall. Journal of Applied Meteorology. Vol. 27. Pages. 30– 51.
  • I.M. Lensky and D. Rosenfeld (2003). A night-time delineation algorithm for infrared satellite data based on microphysical considerations. Journal of Applied Meteorology. Vol. 42. Pages. 1218–1226.
  • T. Nauss and A.A. Kokhanovsky (2006). Discriminating raining from nonraining clouds at mid-latitudes using multispectral satellite data. Atmospheric Chemistry and Physics Vol. 6. Pages. 5031–5036.
  • R. F. Adler, G. J. Huffman and P. R. Keehn (1994). Global Tropical Rain Estimates from Microwave-Adjusted Geosynchronous IR Data. Remote Sensing Reviews. Vol. 11. Pages. 125–152.
  • C. Kidd, D. R. Kniveton, M. C. Todd and T. J. Bellerby (2003). Satellite Rainfall Estimation Using Combined Passive Microwave and Infrared Algorithms. Journal of Hydrometeorology. Vol. 4. Pages.1088–1104.
  • F. J. Turk and S. D. Miller (2005). Toward Improved Characterization of Remotely Sensed Precipitation Regimes with MODIS/AMSR-E Blended Data Techniques. IEEE Transactions on Geoscience and Remote Sensing. Vol. 43. Pages. 1059–1069.
  • G. J. Huffman, R. F. Adler, D. T. Bolvin, G. J. Gu, E. J. Nelkin, K. P. Bowman, Y. Hong, E. F. Stocker and D. B. Wolff (2007). The TRMM Multisatellite Precipitation Analysis (TMPA):Quasi-global, Multiyear, Combined-Sensor Precipitation Estimates at Fine Scales. Journal of Hydrometeorology. Vol. 8. Pages. 38–55.
  • A. Behrangi, B. Imam, K. L. Hsu, S. Sorooshian, T. J. Bellerby and G. J. Huffman (2010). REFAME: Rain Estimation Using Forward-Adjusted Advection of Microwave Estimates. Journal of Hydrometeorology. Vol. 11. Pages. 1305–1321.
  • R. J. Joyce and P. Xie (2011). Kalman Filter-Based CMORPH. Journal of Hydrometeorology. Vol. 12. Pages. 1547–1563.
  • D.A. Vila, L.G.G. de Goncalves, D.L. Toll and J.R. Rozante (2009). Statistical evaluation of combined daily gauge observations and rainfall satellite estimates over continental South America. Journal of Hydrometeorology. Vol. 10. Pages. 533–543.
  • M.C. Periago, X. Lana, C. Serra and G. Fernandez (1991). Precipitation regionalization: an application using a meteorological network in Catalonia (NE Spain). International Journal of Climatology. Vol. 11. Pages. 529–543.
  • H. Feidas, G. Kokolatos, A. Negri, M. Manyin, N. Chrysoulakis and Y. Kamarianakis ( 2009). Validation of an infrared-based satellite algorithm to estimate accumulated rainfall over the Mediterranean basin. Theoritical and Applied Climatology. Vol. 95. Pages. 91-109.
  • P.T. Nastos (2011). Trends and variability of precipitation within the Mediterranean region, based on Global Precipitation Climatology Project (GPCP) and ground based datasets. Advances in the Research of Aquatic Environment. Vol. 1. Pages. 67–74.
  • C.M. Philandras, P.T. Nastos, J. Kapsomenakis, K.C. Douvis, G. Tselioudis and C.S. Zerefos (2011). Long term precipitation trends and variability within the Mediterranean region. Natural Hazards and Earth System Sciences. Vol. 11. Pages. 3235–3250.
  • M. Lazri, S. Ameur, J. M. Brucker, J. Testud, B. Hamadache, S. Hameg, F. Ouallouche and Y. Mohia, (2013). Identification of raining clouds using a method based on optical and microphysical cloud properties from Meteosat second generation daytime and nighttime data. Applied Water Science. Vol.3. Pages.1-11.
  • P. T. Nastos, J. Kapsomenakis and K. C. Douvis (2013). Analysis of precipitation extremes based on satellite and high-resolution gridded data set over Mediterranean basin. Atmospheric Research. Vol. 131. Pages. 46-59.
  • F. Lo Conti, K. L. Hsu, L. V. Noto and S. Sorooshian (2014). Evaluation and comparison of satellite precipitation estimates with reference to a local area in the Mediterranean Sea. Atmospheric Research. Vol. 138. Pages. 189-204.
  • M. Lazri, S. Ameur and Y. Mohia (2014). Instantaneous rainfall estimation using neural network from multispectral observations of SEVIRI radiometer and its application in estimation of daily and monthly rainfall. Advances in Space Research. Vol. 53. Pages. 138-155.
  • J. Schmetz, P. Pili, S. A. Tjemkes, D. Just, J. Kerkmann, S. Rota and A. Ratier (2002). An introduction to Meteosat Second Generation (MSG). Bulletin of the American. Meteorological Society. in press.
  • V. Levizzani, F. Porcú and F. Prodi (1990). Operational rain- fall estimation using METEOSAT infrared imagery: an application in Italy’s Arno river basin. Its potential and drawbacks. ESA Journal. Vol. 14. Pages. 313–323.
  • M. Marroccu, A. Pompei, G. Dalu, G. L. Liberti and A. J. Negri (1993). Precipitation estimation over Sardinia from satellite infrared data. International Journal of Remote Sensing. Vol. 14. Pages. 115–134.
  • R.Tarruella and J. Jorge (2003). Comparison of three infrared satellite techniques to estimate accumulated rainfall over the Iberian Peninsula. International Journal of Climatology. Vol. 23. Pages. 1757-1769.
Year 2015, Volume: 3 Issue: 1, 19 - 23, 13.01.2015
https://doi.org/10.18201/ijisae.85751

Abstract

References

  • X. Li and S. Gao (2011). Precipitation modeling and quantitative analysis. Springer Dordrecht. Pages. 240.
  • C. Prigent (2010). Precipitation retrieval from space: An overview. Comptes Rendus Geoscience. Vol. 342. Pages. 380–389.
  • T.T. Wilheit, A.T.C. Chang, M.S.V. Rao, E.B. Rodgers and J.S. Theon (1977). Satellite technique for quantitatively mapping rainfall rates over oceans. Journal of Applied Meteorology. Vol. 16. Pages. 551–560.
  • C. Kummerow, Y. Hong, W.S. Olson, S. Yang, R.F. Adler, J. McCollum, R. Ferraro, G. Petty, B.-B. Shin and T.T. Wilheit (2001). The evolution of the Goddard profiling algorithm (GPROF) for rainfall estimation from passive microwave sensors. Journal of Applied Meteorology. Vol. 39. Pages. 1801–1820.
  • P. Bauer, P. Amayenc, C.D. Kummerow and E.A. Smith (2001). Over-ocean rainfall retrieval from multisensor data of the Tropical Rainfall Measuring Mission. Part I: Design and evaluation of inversion databases. Journal of Atmospheric and Oceanic Technology. Vol. 18. Pages. 1315–1330.
  • P. Bauer (2001). Over-ocean rainfall retrieval from multisensor data of the Tropical Rainfall Measuring Mission. Part II: Algorithm implementation. Journal of Atmospheric and Oceanic Technology. Vol. 18. Pages. 1838–1855.
  • R.R. Ferraro, F. Weng, N. Grody, L. Zhao, H. Meng, C. Kongoli, P. Pellegrino, S. Qiu and C. Dean (2005). NOAA operational hydrological products derived from the AMSU. IEEE Transactions on Geoscience and Remote Sensing. Vol. 43. Pages. 1036–1049.
  • C.G. Griffith, W.L. Woodley, P.G. Grube, D.W. Martin, J. Stout and D.N. Sikdar (1978). Rain estimation from geosynchronous satellite imagery–visible and infrared studies. Monthly Weather Review. Vol. 106. Pages. 1153–1171.
  • C.G. Griffith (1987). Comparison of gauges and satellite rain estimates for the central United Sates during August 1979. Journal of Geophysical Research. Vol. 92. Pages. 9551–9566.
  • A.J. Negri, R.F. Adler and P.J. Wetzel (1984). Rain estimation from satellites: an estimation of the Griffith-Woodley Technique. Journal of Climate and Applied Meteorology. Vol. 23. Pages. 102–116.
  • R.F. Adler and A.J. Negri (1988). A satellite infrared technique to estimate tropical convective and stratiform rainfall. Journal of Applied Meteorology. Vol. 27. Pages. 30– 51.
  • I.M. Lensky and D. Rosenfeld (2003). A night-time delineation algorithm for infrared satellite data based on microphysical considerations. Journal of Applied Meteorology. Vol. 42. Pages. 1218–1226.
  • T. Nauss and A.A. Kokhanovsky (2006). Discriminating raining from nonraining clouds at mid-latitudes using multispectral satellite data. Atmospheric Chemistry and Physics Vol. 6. Pages. 5031–5036.
  • R. F. Adler, G. J. Huffman and P. R. Keehn (1994). Global Tropical Rain Estimates from Microwave-Adjusted Geosynchronous IR Data. Remote Sensing Reviews. Vol. 11. Pages. 125–152.
  • C. Kidd, D. R. Kniveton, M. C. Todd and T. J. Bellerby (2003). Satellite Rainfall Estimation Using Combined Passive Microwave and Infrared Algorithms. Journal of Hydrometeorology. Vol. 4. Pages.1088–1104.
  • F. J. Turk and S. D. Miller (2005). Toward Improved Characterization of Remotely Sensed Precipitation Regimes with MODIS/AMSR-E Blended Data Techniques. IEEE Transactions on Geoscience and Remote Sensing. Vol. 43. Pages. 1059–1069.
  • G. J. Huffman, R. F. Adler, D. T. Bolvin, G. J. Gu, E. J. Nelkin, K. P. Bowman, Y. Hong, E. F. Stocker and D. B. Wolff (2007). The TRMM Multisatellite Precipitation Analysis (TMPA):Quasi-global, Multiyear, Combined-Sensor Precipitation Estimates at Fine Scales. Journal of Hydrometeorology. Vol. 8. Pages. 38–55.
  • A. Behrangi, B. Imam, K. L. Hsu, S. Sorooshian, T. J. Bellerby and G. J. Huffman (2010). REFAME: Rain Estimation Using Forward-Adjusted Advection of Microwave Estimates. Journal of Hydrometeorology. Vol. 11. Pages. 1305–1321.
  • R. J. Joyce and P. Xie (2011). Kalman Filter-Based CMORPH. Journal of Hydrometeorology. Vol. 12. Pages. 1547–1563.
  • D.A. Vila, L.G.G. de Goncalves, D.L. Toll and J.R. Rozante (2009). Statistical evaluation of combined daily gauge observations and rainfall satellite estimates over continental South America. Journal of Hydrometeorology. Vol. 10. Pages. 533–543.
  • M.C. Periago, X. Lana, C. Serra and G. Fernandez (1991). Precipitation regionalization: an application using a meteorological network in Catalonia (NE Spain). International Journal of Climatology. Vol. 11. Pages. 529–543.
  • H. Feidas, G. Kokolatos, A. Negri, M. Manyin, N. Chrysoulakis and Y. Kamarianakis ( 2009). Validation of an infrared-based satellite algorithm to estimate accumulated rainfall over the Mediterranean basin. Theoritical and Applied Climatology. Vol. 95. Pages. 91-109.
  • P.T. Nastos (2011). Trends and variability of precipitation within the Mediterranean region, based on Global Precipitation Climatology Project (GPCP) and ground based datasets. Advances in the Research of Aquatic Environment. Vol. 1. Pages. 67–74.
  • C.M. Philandras, P.T. Nastos, J. Kapsomenakis, K.C. Douvis, G. Tselioudis and C.S. Zerefos (2011). Long term precipitation trends and variability within the Mediterranean region. Natural Hazards and Earth System Sciences. Vol. 11. Pages. 3235–3250.
  • M. Lazri, S. Ameur, J. M. Brucker, J. Testud, B. Hamadache, S. Hameg, F. Ouallouche and Y. Mohia, (2013). Identification of raining clouds using a method based on optical and microphysical cloud properties from Meteosat second generation daytime and nighttime data. Applied Water Science. Vol.3. Pages.1-11.
  • P. T. Nastos, J. Kapsomenakis and K. C. Douvis (2013). Analysis of precipitation extremes based on satellite and high-resolution gridded data set over Mediterranean basin. Atmospheric Research. Vol. 131. Pages. 46-59.
  • F. Lo Conti, K. L. Hsu, L. V. Noto and S. Sorooshian (2014). Evaluation and comparison of satellite precipitation estimates with reference to a local area in the Mediterranean Sea. Atmospheric Research. Vol. 138. Pages. 189-204.
  • M. Lazri, S. Ameur and Y. Mohia (2014). Instantaneous rainfall estimation using neural network from multispectral observations of SEVIRI radiometer and its application in estimation of daily and monthly rainfall. Advances in Space Research. Vol. 53. Pages. 138-155.
  • J. Schmetz, P. Pili, S. A. Tjemkes, D. Just, J. Kerkmann, S. Rota and A. Ratier (2002). An introduction to Meteosat Second Generation (MSG). Bulletin of the American. Meteorological Society. in press.
  • V. Levizzani, F. Porcú and F. Prodi (1990). Operational rain- fall estimation using METEOSAT infrared imagery: an application in Italy’s Arno river basin. Its potential and drawbacks. ESA Journal. Vol. 14. Pages. 313–323.
  • M. Marroccu, A. Pompei, G. Dalu, G. L. Liberti and A. J. Negri (1993). Precipitation estimation over Sardinia from satellite infrared data. International Journal of Remote Sensing. Vol. 14. Pages. 115–134.
  • R.Tarruella and J. Jorge (2003). Comparison of three infrared satellite techniques to estimate accumulated rainfall over the Iberian Peninsula. International Journal of Climatology. Vol. 23. Pages. 1757-1769.
There are 32 citations in total.

Details

Primary Language English
Journal Section Research Article
Authors

Fatiha Mokdad

Boualem Haddad This is me

Publication Date January 13, 2015
Published in Issue Year 2015 Volume: 3 Issue: 1

Cite

APA Mokdad, F., & Haddad, B. (2015). Rainfall estimation based on NAW approach using MSG-SEVIRI images: An application in north Algeria. International Journal of Intelligent Systems and Applications in Engineering, 3(1), 19-23. https://doi.org/10.18201/ijisae.85751
AMA Mokdad F, Haddad B. Rainfall estimation based on NAW approach using MSG-SEVIRI images: An application in north Algeria. International Journal of Intelligent Systems and Applications in Engineering. January 2015;3(1):19-23. doi:10.18201/ijisae.85751
Chicago Mokdad, Fatiha, and Boualem Haddad. “Rainfall Estimation Based on NAW Approach Using MSG-SEVIRI Images: An Application in North Algeria”. International Journal of Intelligent Systems and Applications in Engineering 3, no. 1 (January 2015): 19-23. https://doi.org/10.18201/ijisae.85751.
EndNote Mokdad F, Haddad B (January 1, 2015) Rainfall estimation based on NAW approach using MSG-SEVIRI images: An application in north Algeria. International Journal of Intelligent Systems and Applications in Engineering 3 1 19–23.
IEEE F. Mokdad and B. Haddad, “Rainfall estimation based on NAW approach using MSG-SEVIRI images: An application in north Algeria”, International Journal of Intelligent Systems and Applications in Engineering, vol. 3, no. 1, pp. 19–23, 2015, doi: 10.18201/ijisae.85751.
ISNAD Mokdad, Fatiha - Haddad, Boualem. “Rainfall Estimation Based on NAW Approach Using MSG-SEVIRI Images: An Application in North Algeria”. International Journal of Intelligent Systems and Applications in Engineering 3/1 (January 2015), 19-23. https://doi.org/10.18201/ijisae.85751.
JAMA Mokdad F, Haddad B. Rainfall estimation based on NAW approach using MSG-SEVIRI images: An application in north Algeria. International Journal of Intelligent Systems and Applications in Engineering. 2015;3:19–23.
MLA Mokdad, Fatiha and Boualem Haddad. “Rainfall Estimation Based on NAW Approach Using MSG-SEVIRI Images: An Application in North Algeria”. International Journal of Intelligent Systems and Applications in Engineering, vol. 3, no. 1, 2015, pp. 19-23, doi:10.18201/ijisae.85751.
Vancouver Mokdad F, Haddad B. Rainfall estimation based on NAW approach using MSG-SEVIRI images: An application in north Algeria. International Journal of Intelligent Systems and Applications in Engineering. 2015;3(1):19-23.