İnsansız Hava Araçları (İHA) için anomali tespiti önemli bir araştırma alanı olmuştur. Anormallikleri tespit etme tekniklerinden biri, geleneksel Makine Öğrenimi (ML) algoritmalarını uygulamaktır, ancak geleneksel ML yaklaşımları, özellikle uzun vadeli bağımlı noktalardaki anormallikleri tespit edemez. Bu çalışma, İHA sistem çağrılarının zaman serisindeki anormallikleri tespit etmek için Uzun Kısa Süreli Bellek (LSTM) yöntemini kullanır. Bunu yapmak için, LSTM ağı, bir İHA sistemindeki olayların zaman aralıklarındaki verilerin uzun vadeli bağımlılıklarını öğrenmek için birbiriyle çalışan birden fazla LSTM hücresinden oluşur. Bu makalede kullanılan veri seti, sistem çağrılarının sırasını ve türünü, sistem çağrısı olaylarının zaman damgalarını, işlem kimliklerini ve isteğe bağlı argümanları içeren bir İHA'dan sistem çağrısı olaylarından toplanmıştır. LSTM tekniği ile derinlemesine modern bir siber tehdit analizi sağlamayı amaçladığımız için veri seti bu çalışmanın amacına uygun bir veri setidir. Deneysel sonuçlar, LSTM tekniğinin sistem çağrılarının zaman serisindeki anormallikleri tespit etmedeki üstün performansını kanıtlamıştır.
Primary Language | Turkish |
---|---|
Subjects | Deep Learning, Machine Learning (Other), System and Network Security |
Journal Section | Articles |
Authors | |
Early Pub Date | December 19, 2023 |
Publication Date | December 19, 2023 |
Submission Date | November 21, 2023 |
Acceptance Date | December 19, 2023 |
Published in Issue | Year 2023 Volume: 7 Issue: 2 |