Research Article
BibTex RIS Cite

CoCrW Alaşımının Yüzey Özelliklerinin İyileştirilmesi için ZIF-8 Sentezi ve Elektroforetik Biriktirme ile Kaplanması

Year 2024, Volume: 8 Issue: 2, 138 - 143, 22.12.2024

Abstract

Aşınma ve yüksek korozyon direncinin yanı sıra biyouyumluluk açısından da mükemmel özellikler sergileyen kobalt bazlı alaşımlar, diğer metalik implant malzemeleri arasında öne çıkmaktadır. Ancak döküm, dövme ve talaşlı imalat gibi geleneksel üretim yöntemleri, CoCr alaşımları gibi işlenmesi zor metalik özel parçaların üretimi için birçok endüstriyel uygulamada yetersiz kalmaktadır. Bu nedenle gelişen teknoloji ile birlikte toz metalurjisi ve eklemeli imalat gibi modern üretim yöntemlerine olan ilgi artmıştır. Lazer toz yatağı füzyonu (L-PBF) ile seçici lazer eritme (SLM), geleneksel imalat yöntemlerinin destekleyemediği karmaşık iç yapılara sahip malzemelerin üretimi için en çok tercih edilen eklemeli imalat yöntemlerinden biridir. Ayrıca diğer tüm metalik malzemeler gibi CoCr alaşımları da vücut içerisinde biyouyumluluk açısından inert özellikler sergilediğinden, bu alaşımlardan üretilen implantlarda osseointegrasyon, biyoaktivite, antibakteriyellik gibi davranışların olmaması implantın başarısını olumsuz yönde etkilemektedir. Bu açıdan bu malzemelerin yüzeylerine çeşitli yüzey işlemleri uygulanarak yüzey özellikleri iyileştirilebilmektedir. Bu anlamda, altıgen geometrisi ve gözenekli yapısıyla hidrofobik karakter sergileyen ZIF-8 metal organik çerçeve (Zn-Zeolitik imidazolat çerçeve) kaplama malzemesi, antibakteriyel ve biyouyumluluğunun yanı sıra kimyasal ve termal kararlılığıyla da dikkat çekmektedir. Bu çalışmada, ZIF-8 kaplama malzemesi ilk olarak Zn(NO3)2 ve 2-metilimidazol ile 50 °C'de metanol çözücüsü kullanılarak sentezlenmiştir. Ayrıca SLM yöntemi ile 10 x 10 x 2 mm3 boyutlarında CoCrW alaşım numuneleri üretilmiştir. Sentezlenen ZIF-8 malzemesi elektroforetik biriktirme (EPD) yöntemi ile CoCrW numunelerinin yüzeyine kaplanmıştır. Sentez ve kaplama işlemlerinin ardından, hem ZIF-8 malzemesinin başarılı sentezini hem de ZIF-8 malzemesinin EPD yöntemiyle CoCrW numune yüzeylerine başarılı bir şekilde kaplandığını doğrulamak için yapısal (XRD) ve morfolojik (SEM) karakterizasyonlar gerçekleştirilmiştir.

References

  • [1] I. Milošev, CoCrMo Alloy for Biomedical Applications, Djokić, S. (Eds.), Biomedical Applications, Modern Aspects of Electrochemistry, Boston, MA: Springer, 55, 1-72, 2012.
  • [2] Q. Chen, G. A., Thouas, “Metallic implant biomaterials”, Mater Sci Eng R Rep, 87, pp. 1-57, 2015.
  • [3] A. W. E. Hodgson, S. Kurz, S. Virtanen, V. Fervel, C. O. A.Olsson, S. Mischler, “Passive and transpassive behaviour of CoCrMo in simulated biological solutions”, Electrochim Acta, 49, pp. 2167–2178, 2004.
  • [4] A. Igual Muñoz, S. Mischler, “Effect of the environment on wear ranking and corrosion of biomedical CoCrMo alloys”, J Mater Sci: Mater Med, 22, pp. 437–450, 2011.
  • [5] C. Chu, M. Su, J. Zhu, D. Li, H. Cheng, X. Chen, G. Liu, “Metal-Organic Framework Nanoparticle-Based Biomineralization: A New Strategy toward Cancer Treatment”, Theranostics,18, 9 (11), pp. 3134-3149, 2019.
  • [6] J. Liu, D. Wu, N. Zhu, Y. Wu, G. Li, “Antibacterial mechanisms and applications of metal-organic frameworks and their derived nanomaterials”, Trends in Food Science & Technology, 109, pp. 413-434, 2021.
  • [7] S. Feng, Q. Tang, Z. Xu, K. Huang, H. Li, Z. Zou, “Development of novel Co-MOF loaded sodium alginate-based packaging films with antimicrobial and ammonia-sensitive functions for shrimp freshness monitoring”, Food Hydrocolloids, 135, 108193, 2023.
  • [8] R. Yang, B. Liu, F. Yu, H. Li, Y. Zhuang, “Superhydrophobic cellulose paper with sustained antibacterial activity prepared by in-situ growth of carvacrol-loaded zinc-based metal organic framework nanorods for food packaging application”, International Journal of Biological Macromolecules, 234, 123712, 2023.
  • [9] J. Matusiak, A. Przekora, W. Franus, “Zeolites and zeolite imidazolate frameworks on a quest to obtain the ideal biomaterial for biomedical applications: A review”, Materials Today, 67, pp. 495-517, 2023.
  • [10] V. Hoseinpour and Z. Shariatinia, “Applications of zeolitic imidazolate framework-8 (ZIF-8) in bone tissue engineering: A review”, Tissue and Cell, 72, 101588, 2021.
  • [11] S. Kouser, A. Hezam, M. J. N. Khadri et al., “A review on zeolite imidazole frameworks: synthesis, properties, and applications”, J Porous Mater, 29, pp. 663–681, 2022.
  • [12] J. Haider, A. Shahzadi, M. U. Akbar, I. Hafeez, I. Shahzadi et al., “A review of synthesis, fabrication, and emerging biomedical applications of metal-organic frameworks”, Biomaterials Advances, 140, 213049, 2022.
  • [13] E. Avcu, F. E. Baştan, H. Z. Abdullah, M. A. U. Rehman, Y. Y. Avcu, A. R. Boccaccini, “Electrophoretic deposition of chitosan-based composite coatings for biomedical applications: A review”, Progress in Materials Science, 103, pp. 69-108, 2019.
  • [14] Z. Hadzhiev and A. R. Boccaccini, “Recent developments in electrophoretic deposition (EPD) of antibacterial coatings for biomedical applications - A review”, Current Opinion in Biomedical Engineering, 21, 100367, 2022.
  • [15] S. Bakhshandeh, S. A. Yavari, “Electrophoretic deposition: a versatile tool against biomaterial associated infections”, J. Mater. Chem. B, 6, pp. 1128-1148, 2018.
  • [16] C. Y. Sun, C. Qin, X. L. Wang, G. S. Yang, K. Z. Shao, Y. Q. Lan, Z. M. Su, P. Huang, C. G. Wang, E. B. Wang, “Zeolitic imidazolate framework-8 as efficient pH-sensitive drug delivery vehicle”, Dalton Trans., 41 (23), 6906, 2012.
  • [17] J. Chen, X. Zhang, C. Huang, H. Cai, S. Hu, Q. Wan, X. Pei, J. Wang, “Osteogenic activity and antibacterial effect of porous titanium modified with metal-organic framework films”, J Biomed Mater Res Part A, 105A, pp. 834–846, 2017.
  • [18] L. Ling, S. Cai, Y. Zuo, M. Tian, T. Meng, H. Tian, X. Bao, G. Xu, “Copper-doped zeolitic imidazolate frameworks-8/hydroxyapatite composite coating endows magnesium alloy with excellent corrosion resistance, antibacterial ability and biocompatibility”, Colloids and Surfaces B: Biointerfaces, 219, 112810, 2022.
  • [19] X. Wen, J. Ma, D. Jiang, J. Ma, “Fabrication of indocyanine green-loaded zeolitic imidazole frameworks-90 coating on titanium implants to enhance antibacterial and osteogenic effects”, Materials Letters, 351, 135064, 2023.
  • [20] B. Tao, W. Yi, X. Qin, J. Wu, K. Li, A. Guo, J. Hao, L. Chen, “Improvement of antibacterial, anti-inflammatory, and osteogenic properties of OGP loaded Co-MOF coating on titanium implants for advanced osseointegration”, Journal of Materials Science & Technology, 146, pp. 131-144, 2023.
  • [21] S. R. Venna and M. A. Carreon, “Highly Permeable Zeolite Imidazolate Framework-8 Membranes for CO2/CH4 Separation”, Journal of the American Chemical Society, 132(1), pp. 76-78, 2010.
  • [22] M. J. C. Ordoñez, K. J. Balkus, J. P. Ferraris, I. H. Musselman, “Molecular sieving realized with ZIF-8/Matrimid® mixed-matrix membranes”, Journal of Membrane Science, 361, 1–2, pp. 28-37, 2010.
  • [23] Y. Pan, Y. Liu, G. Zeng, L. Zhao, Z. Lai, “Rapid synthesis of zeolitic imidazolate framework-8 (ZIF-8) nanocrystals in an aqueous system”, Chemical Communications, 47(7), 2071, 2011.
  • [24] Ş. M. Tüzemen, Y. B. Bozkurt, B. Atik, Y. Uzun, and A. Çelik, “Investigation of the Effect of Bioactive Glass Coating on the Corrosion Behavior of Pre-treated Ti6Al4V Alloy”, TJNS, no. 1, pp. 87–91, October 2024.
  • [25] Ş. M. Tüzemen, Y. B. Bozkurt, B. Atik, Y. Uzun, and A. Çelik, “Electrochemical Impedance Spectroscopy Analysis of 45S5 Bioglass Coating on After Oxidation of CoCrW Alloy”, TJNS, no. 1, pp. 82–86, October 2024.

Synthesis and Coating with Electrophoretic Deposition of ZIF-8 for the Improvement of Surface Properties of CoCrW Alloy

Year 2024, Volume: 8 Issue: 2, 138 - 143, 22.12.2024

Abstract

Cobalt-based alloys, which exhibit excellent properties in terms of wear and high corrosion resistance as well as biocompatibility, stand out among other metallic implant materials. However, traditional production methods such as casting, forging and machining are insufficient in many industrial applications for the production of difficult-to-machine metallic special parts such as CoCr alloys. Therefore, with the developing technology, interest in modern production methods such as powder metallurgy and additive manufacturing has increased. Selective laser melting (SLM) with laser powder bed fusion (L-PBF) is one of the most preferred additive manufacturing methods for the production of materials with complex internal structures that traditional manufacturing methods cannot support. In addition, since CoCr alloys, like all other metallic materials, exhibit inert properties in terms of biocompatibility within the body, the lack of behaviors such as osseointegration, bioactivity, antibacteriality in implants produced from these alloys negatively affects the success of the implant. In this respect, surface properties can be improved by applying various surface treatments to the surfaces of these materials. In this sense, ZIF-8 metal organic framework (Zn-Zeolitic imidazolate framework) coating material, which exhibits hydrophobic character with its hexagonal geometry and porous structure, is remarkable for its chemical and thermal stability as well as its antibacterial and biocompatibility. In this study, ZIF-8 coating material was first synthesized with Zn(NO3)2 and 2-methylimidazole using methanol solvent at 50 °C. In addition, CoCrW alloy samples with dimensions of 10 x 10 x 2 mm3 were produced by SLM method. The synthesized ZIF-8 material was coated on the surface of CoCrW samples by electrophoretic deposition (EPD) method. Following the synthesis and coating processes, structural (XRD) and morphological (SEM) characterizations were performed to confirm both the successful synthesis of ZIF-8 material and the successful coating of ZIF-8 material on CoCrW sample surfaces by EPD method.

References

  • [1] I. Milošev, CoCrMo Alloy for Biomedical Applications, Djokić, S. (Eds.), Biomedical Applications, Modern Aspects of Electrochemistry, Boston, MA: Springer, 55, 1-72, 2012.
  • [2] Q. Chen, G. A., Thouas, “Metallic implant biomaterials”, Mater Sci Eng R Rep, 87, pp. 1-57, 2015.
  • [3] A. W. E. Hodgson, S. Kurz, S. Virtanen, V. Fervel, C. O. A.Olsson, S. Mischler, “Passive and transpassive behaviour of CoCrMo in simulated biological solutions”, Electrochim Acta, 49, pp. 2167–2178, 2004.
  • [4] A. Igual Muñoz, S. Mischler, “Effect of the environment on wear ranking and corrosion of biomedical CoCrMo alloys”, J Mater Sci: Mater Med, 22, pp. 437–450, 2011.
  • [5] C. Chu, M. Su, J. Zhu, D. Li, H. Cheng, X. Chen, G. Liu, “Metal-Organic Framework Nanoparticle-Based Biomineralization: A New Strategy toward Cancer Treatment”, Theranostics,18, 9 (11), pp. 3134-3149, 2019.
  • [6] J. Liu, D. Wu, N. Zhu, Y. Wu, G. Li, “Antibacterial mechanisms and applications of metal-organic frameworks and their derived nanomaterials”, Trends in Food Science & Technology, 109, pp. 413-434, 2021.
  • [7] S. Feng, Q. Tang, Z. Xu, K. Huang, H. Li, Z. Zou, “Development of novel Co-MOF loaded sodium alginate-based packaging films with antimicrobial and ammonia-sensitive functions for shrimp freshness monitoring”, Food Hydrocolloids, 135, 108193, 2023.
  • [8] R. Yang, B. Liu, F. Yu, H. Li, Y. Zhuang, “Superhydrophobic cellulose paper with sustained antibacterial activity prepared by in-situ growth of carvacrol-loaded zinc-based metal organic framework nanorods for food packaging application”, International Journal of Biological Macromolecules, 234, 123712, 2023.
  • [9] J. Matusiak, A. Przekora, W. Franus, “Zeolites and zeolite imidazolate frameworks on a quest to obtain the ideal biomaterial for biomedical applications: A review”, Materials Today, 67, pp. 495-517, 2023.
  • [10] V. Hoseinpour and Z. Shariatinia, “Applications of zeolitic imidazolate framework-8 (ZIF-8) in bone tissue engineering: A review”, Tissue and Cell, 72, 101588, 2021.
  • [11] S. Kouser, A. Hezam, M. J. N. Khadri et al., “A review on zeolite imidazole frameworks: synthesis, properties, and applications”, J Porous Mater, 29, pp. 663–681, 2022.
  • [12] J. Haider, A. Shahzadi, M. U. Akbar, I. Hafeez, I. Shahzadi et al., “A review of synthesis, fabrication, and emerging biomedical applications of metal-organic frameworks”, Biomaterials Advances, 140, 213049, 2022.
  • [13] E. Avcu, F. E. Baştan, H. Z. Abdullah, M. A. U. Rehman, Y. Y. Avcu, A. R. Boccaccini, “Electrophoretic deposition of chitosan-based composite coatings for biomedical applications: A review”, Progress in Materials Science, 103, pp. 69-108, 2019.
  • [14] Z. Hadzhiev and A. R. Boccaccini, “Recent developments in electrophoretic deposition (EPD) of antibacterial coatings for biomedical applications - A review”, Current Opinion in Biomedical Engineering, 21, 100367, 2022.
  • [15] S. Bakhshandeh, S. A. Yavari, “Electrophoretic deposition: a versatile tool against biomaterial associated infections”, J. Mater. Chem. B, 6, pp. 1128-1148, 2018.
  • [16] C. Y. Sun, C. Qin, X. L. Wang, G. S. Yang, K. Z. Shao, Y. Q. Lan, Z. M. Su, P. Huang, C. G. Wang, E. B. Wang, “Zeolitic imidazolate framework-8 as efficient pH-sensitive drug delivery vehicle”, Dalton Trans., 41 (23), 6906, 2012.
  • [17] J. Chen, X. Zhang, C. Huang, H. Cai, S. Hu, Q. Wan, X. Pei, J. Wang, “Osteogenic activity and antibacterial effect of porous titanium modified with metal-organic framework films”, J Biomed Mater Res Part A, 105A, pp. 834–846, 2017.
  • [18] L. Ling, S. Cai, Y. Zuo, M. Tian, T. Meng, H. Tian, X. Bao, G. Xu, “Copper-doped zeolitic imidazolate frameworks-8/hydroxyapatite composite coating endows magnesium alloy with excellent corrosion resistance, antibacterial ability and biocompatibility”, Colloids and Surfaces B: Biointerfaces, 219, 112810, 2022.
  • [19] X. Wen, J. Ma, D. Jiang, J. Ma, “Fabrication of indocyanine green-loaded zeolitic imidazole frameworks-90 coating on titanium implants to enhance antibacterial and osteogenic effects”, Materials Letters, 351, 135064, 2023.
  • [20] B. Tao, W. Yi, X. Qin, J. Wu, K. Li, A. Guo, J. Hao, L. Chen, “Improvement of antibacterial, anti-inflammatory, and osteogenic properties of OGP loaded Co-MOF coating on titanium implants for advanced osseointegration”, Journal of Materials Science & Technology, 146, pp. 131-144, 2023.
  • [21] S. R. Venna and M. A. Carreon, “Highly Permeable Zeolite Imidazolate Framework-8 Membranes for CO2/CH4 Separation”, Journal of the American Chemical Society, 132(1), pp. 76-78, 2010.
  • [22] M. J. C. Ordoñez, K. J. Balkus, J. P. Ferraris, I. H. Musselman, “Molecular sieving realized with ZIF-8/Matrimid® mixed-matrix membranes”, Journal of Membrane Science, 361, 1–2, pp. 28-37, 2010.
  • [23] Y. Pan, Y. Liu, G. Zeng, L. Zhao, Z. Lai, “Rapid synthesis of zeolitic imidazolate framework-8 (ZIF-8) nanocrystals in an aqueous system”, Chemical Communications, 47(7), 2071, 2011.
  • [24] Ş. M. Tüzemen, Y. B. Bozkurt, B. Atik, Y. Uzun, and A. Çelik, “Investigation of the Effect of Bioactive Glass Coating on the Corrosion Behavior of Pre-treated Ti6Al4V Alloy”, TJNS, no. 1, pp. 87–91, October 2024.
  • [25] Ş. M. Tüzemen, Y. B. Bozkurt, B. Atik, Y. Uzun, and A. Çelik, “Electrochemical Impedance Spectroscopy Analysis of 45S5 Bioglass Coating on After Oxidation of CoCrW Alloy”, TJNS, no. 1, pp. 82–86, October 2024.
There are 25 citations in total.

Details

Primary Language English
Subjects Biomedical Sciences and Technology, Materials Engineering (Other)
Journal Section Articles
Authors

Yakup Uzun 0000-0002-5134-7640

Ayşenur Alptekin 0009-0007-1362-5711

Şükran Merve Tüzemen 0000-0003-0400-5602

Burak Atik 0000-0003-2117-9284

Yusuf Burak Bozkurt 0000-0003-3859-9322

Ayhan Çelik 0000-0002-8096-0794

Early Pub Date December 18, 2024
Publication Date December 22, 2024
Submission Date December 5, 2024
Acceptance Date December 16, 2024
Published in Issue Year 2024 Volume: 8 Issue: 2

Cite

IEEE Y. Uzun, A. Alptekin, Ş. M. Tüzemen, B. Atik, Y. B. Bozkurt, and A. Çelik, “Synthesis and Coating with Electrophoretic Deposition of ZIF-8 for the Improvement of Surface Properties of CoCrW Alloy”, IJMSIT, vol. 8, no. 2, pp. 138–143, 2024.