Stres Altında Beyin Bağlantısında Uyumsal ve Bozucu Değişimlerin İncelenmesi
Year 2025,
Volume: 9 Issue: 2, 227 - 232
Muhammad Asad Zaheer
Aamir Saeed Malik
Abstract
Bu çalışma, stresin beyin bölgeleri arasındaki iletişimi nasıl etkilediğini ve bireylerin bu duruma nasıl farklı tepkiler verdiğini incelemektedir. Kişiye bağlı olarak, stres beyin bölgeleri arasındaki iletişimin artmasına veya azalmasına yol açabilir. Bu değişimlerde bireysel dayanıklılık ve beyin anatomisindeki farklılıklar etkili olabilir. Bazı bireylerde stres altında beyin bağlantısında azalma gözlenirken, diğerleri bölgeler arası iletişimi artırarak duruma uyum sağlayabilir. Bulgular, katılımcıların yaklaşık %60'ının özellikle prefrontal korteks (PFC) bölgesinde bağlantısallığın azaldığını ortaya koymuştur; bu da stresin genellikle beyin bölgeleri arasındaki iletişimi bozduğunu göstermektedir. Buna karşılık, %40'ında telafi edici bağlantı desenleri gözlenmiştir. Bu farklılıkların anlaşılması, kişiye özel stres yönetim stratejilerinin geliştirilmesi açısından büyük önem taşımaktadır. Çalışmanın sonuçları, ruh sağlığının iyileştirilmesi ve iyi oluş halinin desteklenmesi için hedefe yönelik müdahaleler geliştirilmesine yönelik daha ileri araştırmalara güçlü bir temel sunmaktadır.
Project Number
Czech Science Foundation project number 24-10990S
References
-
C. M. Michel and T. Koenig, "EEG microstates as a tool for studying the temporal dynamics of whole-brain neuronal networks: a review," Neuroimage, vol. 180, pp. 577-593, 2018.
-
[2] E. T. Attar, "Review of electroencephalography signals approaches for mental stress assessment," Neurosciences Journal, vol. 27, no. 4, pp. 209-215, 2022.
-
[3] R. Sharma and K. Chopra, "EEG signal analysis and detection of stress using classification techniques," Journal of Information and Optimization Sciences, vol. 41, no. 1, pp. 229-238, 2020.
-
[4] B. S. McEwen, "Biomarkers for assessing population and individual health and disease related to stress and adaptation," Metabolism, vol. 64, no. 3, pp. S2-S10, 2015.
-
[5] G. Vanhollebeke, M. Kappen, R. De Raedt, C. Baeken, P. van Mierlo, and M.-A. Vanderhasselt, "Effects of acute psychosocial stress on source level EEG power and functional connectivity measures," Scientific reports, vol. 13, no. 1, p. 8807, 2023.
-
[6] E. Perez-Valero, M. A. Vaquero-Blasco, M. A. Lopez-Gordo, and C. Morillas, "Quantitative assessment of stress through EEG during a virtual reality stress-relax session," Frontiers in Computational Neuroscience, vol. 15, p. 684423, 2021.
-
[7] U. Chaudhary, "Non-invasive Brain Signal Acquisition Techniques: Exploring EEG, EOG, fNIRS, fMRI, MEG, and fUS," in Expanding Senses using Neurotechnology: Volume 1‒Foundation of Brain-Computer Interface Technology: Springer, 2025, pp. 25-80.
-
[8] C. M. Michel, "High-resolution EEG," Handbook of clinical neurology, vol. 160, pp. 185-201, 2019.
-
[9] S. J. Vogrin and C. Plummer, "EEG source imaging—clinical considerations for EEG acquisition and signal processing for improved temporo-spatial resolution," Journal of Clinical Neurophysiology, vol. 41, no. 1, pp. 8-18, 2024.
-
[10] S. K. Jena, "Examination stress and its effect on EEG," Int J Med Sci Pub Health, vol. 11, no. 4, pp. 1493-7, 2015.
-
[11] M. Fraschini, S. M. La Cava, L. Didaci, and L. Barberini, "On the variability of functional connectivity and network measures in source-reconstructed EEG time-series," Entropy, vol. 23, no. 1, p. 5, 2020.
-
[12] E. Woo, L. H. Sansing, A. F. Arnsten, and D. Datta, "Chronic stress weakens connectivity in the prefrontal cortex: architectural and molecular changes," Chronic Stress, vol. 5, p. 24705470211029254, 2021.
-
[13] R. Katmah, F. Al-Shargie, U. Tariq, F. Babiloni, F. Al-Mughairbi, and H. Al-Nashash, "A review on mental stress assessment methods using EEG signals," Sensors, vol. 21, no. 15, p. 5043, 2021.
-
[14] Y. Badr, U. Tariq, F. Al-Shargie, F. Babiloni, F. Al Mughairbi, and H. Al-Nashash, "A review on evaluating mental stress by deep learning using EEG signals," Neural Computing and Applications, vol. 36, no. 21, pp. 12629-12654, 2024.
-
[15] G. Chiarion, L. Sparacino, Y. Antonacci, L. Faes, and L. Mesin, "Connectivity analysis in EEG data: a tutorial review of the state of the art and emerging trends," Bioengineering, vol. 10, no. 3, p. 372, 2023.
-
[16] J. Alonso, S. Romero, M. Ballester, R. Antonijoan, and M. Mañanas, "Stress assessment based on EEG univariate features and functional connectivity measures," Physiological measurement, vol. 36, no. 7, p. 1351, 2015.
-
[17] A. M. Goodman et al., "Stress-induced changes in effective connectivity during regulation of the emotional response to threat," Brain connectivity, vol. 12, no. 7, pp. 629-638, 2022.
-
[18] A. Golkar, E. Johansson, M. Kasahara, W. Osika, A. Perski, and I. Savic, "The influence of work-related chronic stress on the regulation of emotion and on functional connectivity in the brain," PloS one, vol. 9, no. 9, p. e104550, 2014.
-
[19] L. Xia, A. S. Malik, and A. R. Subhani, "A physiological signal-based method for early mental-stress detection," in Cyber-Enabled Intelligence: Taylor & Francis, 2019, pp. 259-289.
-
[20] A. R. Subhani, A. S. Malik, N. Kamil, and M. N. M. Saad, "Difference in brain dynamics during arithmetic task performed in stress and control conditions," in 2016 IEEE EMBS Conference on Biomedical Engineering and Sciences (IECBES), 2016: IEEE, pp. 695-698.
-
[21] A. Hag, D. Handayani, T. Pillai, T. Mantoro, M. H. Kit, and F. Al-Shargie, "EEG mental stress assessment using hybrid multi-domain feature sets of functional connectivity network and time-frequency features," Sensors, vol. 21, no. 18, p. 6300, 2021.
-
[22] F. Saffari, K. Norouzi, L. E. Bruni, S. Zarei, and T. Z. Ramsøy, "Impact of varying levels of mental stress on phase information of EEG Signals: A study on the Frontal, Central, and parietal regions," Biomedical Signal Processing and Control, vol. 86, p. 105236, 2023.
-
[23] A. Darzi, H. Azami, and R. Khosrowabadi, "Brain functional connectivity changes in long-term mental stress," Journal of Neurodevelopmental Cognition, vol. 1, no. 1, pp. 16-41, 2022.
-
[24] C. Imperatori et al., "Exposure to nature is associated with decreased functional connectivity within the distress network: A resting state EEG study," Frontiers in Psychology, vol. 14, p. 1171215, 2023.
-
[25] Y. Zhang et al., "Machine learning-based identification of a psychotherapy-predictive electroencephalographic signature in PTSD," Nature Mental Health, vol. 1, no. 4, pp. 284-294, 2023.
-
[26] F. Al-Shargie, "Prefrontal cortex functional connectivity based on simultaneous record of electrical and hemodynamic responses associated with mental stress," arXiv preprint arXiv:2103.04636, 2021.
-
[27] J. J. Cerqueira, O. F. Almeida, and N. Sousa, "The stressed prefrontal cortex. Left? Right!," Brain, behavior, and immunity, vol. 22, no. 5, pp. 630-638, 2008.
-
[28] G. Berretz, J. Packheiser, O. T. Wolf, and S. Ocklenburg, "Improved interhemispheric connectivity after stress during lexical decision making," Behavioural brain research, vol. 418, p. 113648, 2022.
-
[29] J. Teng, S. A. Massar, and J. Lim, "Inter-relationships between changes in stress, mindfulness, and dynamic functional connectivity in response to a social stressor," Scientific Reports, vol. 12, no. 1, p. 2396, 2022.
-
[30] M. A. Laine, E. Sokolowska, M. Dudek, S.-A. Callan, P. Hyytiä, and I. Hovatta, "Brain activation induced by chronic psychosocial stress in mice," Scientific reports, vol. 7, no. 1, p. 15061, 2017.
-
[31] Y. S. Nikolova et al., "Shifting priorities: highly conserved behavioral and brain network adaptations to chronic stress across species," Translational psychiatry, vol. 8, no. 1, p. 26, 2018.
-
[32] E. J. Kim and J. J. Kim, "Neurocognitive effects of stress: a metaparadigm perspective," Molecular psychiatry, vol. 28, no. 7, pp. 2750-2763, 2023.
-
[33] A. Chenani et al., "Repeated stress exposure leads to structural synaptic instability prior to disorganization of hippocampal coding and impairments in learning," Translational psychiatry, vol. 12, no. 1, p. 381, 2022.
-
[34] Y. Zhang, Z. Dai, J. Hu, S. Qin, R. Yu, and Y. Sun, "Stress-induced changes in modular organizations of human brain functional networks," Neurobiology of stress, vol. 13, p. 100231, 2020.
-
[35] F. P. Gil, "Current aspects of psychosomatic and endocrine stress research," Deutsche medizinische Wochenschrift (1946), vol. 130, no. 3, pp. 102-106, 2005.
-
[36] J. Siegrist and J. Li, "Work stress and altered biomarkers: a synthesis of findings based on the effort–reward imbalance model," International journal of environmental research and public health, vol. 14, no. 11, p. 1373, 2017.
-
[37] R. A. Andersen and H. Cui, "Intention, action planning, and decision making in parietal-frontal circuits," Neuron, vol. 63, no. 5, pp. 568-583, 2009.
-
[38] X. Gu, P. R. Hof, K. J. Friston, and J. Fan, "Anterior insular cortex and emotional awareness," Journal of Comparative Neurology, vol. 521, no. 15, pp. 3371-3388, 2013.
Exploring Adaptive and Disruptive Changes in Brain Connectivity Under Stress
Year 2025,
Volume: 9 Issue: 2, 227 - 232
Muhammad Asad Zaheer
Aamir Saeed Malik
Abstract
This study examines how stress impacts the communication between various brain regions, emphasizing the different ways individuals respond. Depending on the person, stress can result in either increased or decreased communication between different parts of the brain. Resilience and variations in brain anatomy are factors that may influence these changes. Certain individuals may show decreased brain connectivity under stress, while others may adapt by enhancing interregional communication. The findings revealed that around 60% of the participants experienced reduced connectivity mainly in the PFC area, suggesting that stress often disrupts communication among brain regions, while 40% showed compensatory patterns. Understanding these differences are essential for creating customized stress management strategies. The results of this study offer a strong foundation for further research aimed at improving mental health and well-being through targeted support and approaches.
Ethical Statement
The authors acknowledge this support, which includes funding from the Czech Science Foundation project number 24-10990S. This support has significantly contributed to the completion of this study.
Project Number
Czech Science Foundation project number 24-10990S
References
-
C. M. Michel and T. Koenig, "EEG microstates as a tool for studying the temporal dynamics of whole-brain neuronal networks: a review," Neuroimage, vol. 180, pp. 577-593, 2018.
-
[2] E. T. Attar, "Review of electroencephalography signals approaches for mental stress assessment," Neurosciences Journal, vol. 27, no. 4, pp. 209-215, 2022.
-
[3] R. Sharma and K. Chopra, "EEG signal analysis and detection of stress using classification techniques," Journal of Information and Optimization Sciences, vol. 41, no. 1, pp. 229-238, 2020.
-
[4] B. S. McEwen, "Biomarkers for assessing population and individual health and disease related to stress and adaptation," Metabolism, vol. 64, no. 3, pp. S2-S10, 2015.
-
[5] G. Vanhollebeke, M. Kappen, R. De Raedt, C. Baeken, P. van Mierlo, and M.-A. Vanderhasselt, "Effects of acute psychosocial stress on source level EEG power and functional connectivity measures," Scientific reports, vol. 13, no. 1, p. 8807, 2023.
-
[6] E. Perez-Valero, M. A. Vaquero-Blasco, M. A. Lopez-Gordo, and C. Morillas, "Quantitative assessment of stress through EEG during a virtual reality stress-relax session," Frontiers in Computational Neuroscience, vol. 15, p. 684423, 2021.
-
[7] U. Chaudhary, "Non-invasive Brain Signal Acquisition Techniques: Exploring EEG, EOG, fNIRS, fMRI, MEG, and fUS," in Expanding Senses using Neurotechnology: Volume 1‒Foundation of Brain-Computer Interface Technology: Springer, 2025, pp. 25-80.
-
[8] C. M. Michel, "High-resolution EEG," Handbook of clinical neurology, vol. 160, pp. 185-201, 2019.
-
[9] S. J. Vogrin and C. Plummer, "EEG source imaging—clinical considerations for EEG acquisition and signal processing for improved temporo-spatial resolution," Journal of Clinical Neurophysiology, vol. 41, no. 1, pp. 8-18, 2024.
-
[10] S. K. Jena, "Examination stress and its effect on EEG," Int J Med Sci Pub Health, vol. 11, no. 4, pp. 1493-7, 2015.
-
[11] M. Fraschini, S. M. La Cava, L. Didaci, and L. Barberini, "On the variability of functional connectivity and network measures in source-reconstructed EEG time-series," Entropy, vol. 23, no. 1, p. 5, 2020.
-
[12] E. Woo, L. H. Sansing, A. F. Arnsten, and D. Datta, "Chronic stress weakens connectivity in the prefrontal cortex: architectural and molecular changes," Chronic Stress, vol. 5, p. 24705470211029254, 2021.
-
[13] R. Katmah, F. Al-Shargie, U. Tariq, F. Babiloni, F. Al-Mughairbi, and H. Al-Nashash, "A review on mental stress assessment methods using EEG signals," Sensors, vol. 21, no. 15, p. 5043, 2021.
-
[14] Y. Badr, U. Tariq, F. Al-Shargie, F. Babiloni, F. Al Mughairbi, and H. Al-Nashash, "A review on evaluating mental stress by deep learning using EEG signals," Neural Computing and Applications, vol. 36, no. 21, pp. 12629-12654, 2024.
-
[15] G. Chiarion, L. Sparacino, Y. Antonacci, L. Faes, and L. Mesin, "Connectivity analysis in EEG data: a tutorial review of the state of the art and emerging trends," Bioengineering, vol. 10, no. 3, p. 372, 2023.
-
[16] J. Alonso, S. Romero, M. Ballester, R. Antonijoan, and M. Mañanas, "Stress assessment based on EEG univariate features and functional connectivity measures," Physiological measurement, vol. 36, no. 7, p. 1351, 2015.
-
[17] A. M. Goodman et al., "Stress-induced changes in effective connectivity during regulation of the emotional response to threat," Brain connectivity, vol. 12, no. 7, pp. 629-638, 2022.
-
[18] A. Golkar, E. Johansson, M. Kasahara, W. Osika, A. Perski, and I. Savic, "The influence of work-related chronic stress on the regulation of emotion and on functional connectivity in the brain," PloS one, vol. 9, no. 9, p. e104550, 2014.
-
[19] L. Xia, A. S. Malik, and A. R. Subhani, "A physiological signal-based method for early mental-stress detection," in Cyber-Enabled Intelligence: Taylor & Francis, 2019, pp. 259-289.
-
[20] A. R. Subhani, A. S. Malik, N. Kamil, and M. N. M. Saad, "Difference in brain dynamics during arithmetic task performed in stress and control conditions," in 2016 IEEE EMBS Conference on Biomedical Engineering and Sciences (IECBES), 2016: IEEE, pp. 695-698.
-
[21] A. Hag, D. Handayani, T. Pillai, T. Mantoro, M. H. Kit, and F. Al-Shargie, "EEG mental stress assessment using hybrid multi-domain feature sets of functional connectivity network and time-frequency features," Sensors, vol. 21, no. 18, p. 6300, 2021.
-
[22] F. Saffari, K. Norouzi, L. E. Bruni, S. Zarei, and T. Z. Ramsøy, "Impact of varying levels of mental stress on phase information of EEG Signals: A study on the Frontal, Central, and parietal regions," Biomedical Signal Processing and Control, vol. 86, p. 105236, 2023.
-
[23] A. Darzi, H. Azami, and R. Khosrowabadi, "Brain functional connectivity changes in long-term mental stress," Journal of Neurodevelopmental Cognition, vol. 1, no. 1, pp. 16-41, 2022.
-
[24] C. Imperatori et al., "Exposure to nature is associated with decreased functional connectivity within the distress network: A resting state EEG study," Frontiers in Psychology, vol. 14, p. 1171215, 2023.
-
[25] Y. Zhang et al., "Machine learning-based identification of a psychotherapy-predictive electroencephalographic signature in PTSD," Nature Mental Health, vol. 1, no. 4, pp. 284-294, 2023.
-
[26] F. Al-Shargie, "Prefrontal cortex functional connectivity based on simultaneous record of electrical and hemodynamic responses associated with mental stress," arXiv preprint arXiv:2103.04636, 2021.
-
[27] J. J. Cerqueira, O. F. Almeida, and N. Sousa, "The stressed prefrontal cortex. Left? Right!," Brain, behavior, and immunity, vol. 22, no. 5, pp. 630-638, 2008.
-
[28] G. Berretz, J. Packheiser, O. T. Wolf, and S. Ocklenburg, "Improved interhemispheric connectivity after stress during lexical decision making," Behavioural brain research, vol. 418, p. 113648, 2022.
-
[29] J. Teng, S. A. Massar, and J. Lim, "Inter-relationships between changes in stress, mindfulness, and dynamic functional connectivity in response to a social stressor," Scientific Reports, vol. 12, no. 1, p. 2396, 2022.
-
[30] M. A. Laine, E. Sokolowska, M. Dudek, S.-A. Callan, P. Hyytiä, and I. Hovatta, "Brain activation induced by chronic psychosocial stress in mice," Scientific reports, vol. 7, no. 1, p. 15061, 2017.
-
[31] Y. S. Nikolova et al., "Shifting priorities: highly conserved behavioral and brain network adaptations to chronic stress across species," Translational psychiatry, vol. 8, no. 1, p. 26, 2018.
-
[32] E. J. Kim and J. J. Kim, "Neurocognitive effects of stress: a metaparadigm perspective," Molecular psychiatry, vol. 28, no. 7, pp. 2750-2763, 2023.
-
[33] A. Chenani et al., "Repeated stress exposure leads to structural synaptic instability prior to disorganization of hippocampal coding and impairments in learning," Translational psychiatry, vol. 12, no. 1, p. 381, 2022.
-
[34] Y. Zhang, Z. Dai, J. Hu, S. Qin, R. Yu, and Y. Sun, "Stress-induced changes in modular organizations of human brain functional networks," Neurobiology of stress, vol. 13, p. 100231, 2020.
-
[35] F. P. Gil, "Current aspects of psychosomatic and endocrine stress research," Deutsche medizinische Wochenschrift (1946), vol. 130, no. 3, pp. 102-106, 2005.
-
[36] J. Siegrist and J. Li, "Work stress and altered biomarkers: a synthesis of findings based on the effort–reward imbalance model," International journal of environmental research and public health, vol. 14, no. 11, p. 1373, 2017.
-
[37] R. A. Andersen and H. Cui, "Intention, action planning, and decision making in parietal-frontal circuits," Neuron, vol. 63, no. 5, pp. 568-583, 2009.
-
[38] X. Gu, P. R. Hof, K. J. Friston, and J. Fan, "Anterior insular cortex and emotional awareness," Journal of Comparative Neurology, vol. 521, no. 15, pp. 3371-3388, 2013.