Pelletization of Sunflower Seed Wastes: Effects of Grinding Sieve Size and Pellet Diameter on Pellet Properties
Year 2025,
Volume: 9 Issue: 2, 116 - 126, 30.12.2025
Umut Asilöz
,
Bahadır Demirel
,
Osman Mert Yaz
Abstract
In this study, pelletization was performed using the seed residues of sunflower, a crop that is intensively cultivated. Pellets were obtained for the seed residues of the selected edible sunflower using three different mill screen sizes (10, 25, and 30 mm) and two different pellet diameters (8 and 10 mm). The physicochemical properties of the pellets obtained were determined and compared. In addition, thermal parameters were determined for the pellets obtained. The study aimed to reveal the effect of grinding fineness and die hole diameter on pellet parameters. The highest breaking resistance value was determined to be 99.11% for a pellet diameter of 10 mm and a mill screen diameter of 10 mm. The highest durability resistance value was determined to be 83.96% for a mill screen diameter of 10 mm and a pellet diameter of 10 mm. The highest pellet hardness value was determined to be 0.83 kN for a mill screen diameter of 25 mm and a pellet diameter of 8 mm. When moisture values were examined, the highest moisture content was observed in pellets produced with a 10 mm mill screen diameter and a 10 mm pellet diameter, at 5.02%. When the obtained data was evaluated, it was observed that pellet density and pellet quality decreased with an increase in particle size, while pellet resistance, pellet density, and pellet durability increased with a decrease in particle size. When examining the flue gas emission values for the pellets, it was observed that they were below the limit values permitted by the regulations.
Supporting Institution
Erciyes University, Graduate School of Natural and Applied Sciences
References
-
Bilgin, S., Koçer, A., Yılmaz, H., Acar, M., & Dok, M. (2016). Çay fabrikası atıklarınının peletlenmesi ve pelet fiziksel özelliklerinin belirlenmesi. Journal of Agricultural Faculty of Gaziosmanpaşa University, 33 (Ek sayı), 70-80.
-
Bilgin, S., Yılmaz, H., Koçer, A., Acar, M., & Dok, M. (2015). Fındık zurufunun peletlenmesi ve pelet fiziksel özelliklerinin belirlenmesi. Tarım Makinaları Bilimi Dergisi, 11 (3), 265-273.
-
Çay, A., Özpınar, S., & Aydın, A. (2017). Farklı ürün rotasyonlarında uzun dönem uygulanan azaltılmış toprak işleme ve yeşil gübrelemenin ayçiçeği gelişimi ve yabancı otlanmaya etkileri. Tekirdağ Ziraat Fakültesi Dergisi, 14 (3), 116-126.
-
Çiçek, G., Sümer, S. K., Egesel, C. Ö., & Say, S. M. (2019). Şeftali ağacı budama artık potansiyelinin hesaplanmasına yönelik katsayının belirlenmesi. ÇOMÜ Ziraat Fakültesi Dergisi, 7 (2), 299-305. https://doi.org/10.33202/comuagri.571527
-
Çiçek, G., Sümer, S. K., Egesel, C. Ö., Say, S. M., & Aydın, A. (2021). Determination of coefficients and biomass potential for pruning residuals in some olive varieties. Kahramanmaraş Sütçü İmam Üniversitesi Tarım ve Doğa Dergisi, 24 (2), 313-318. https://doi.org/10.18016/ksutarimdoga.vi.690022
-
Colley, Z. (2006). Compaction of switchgrass for value added utilization. Electronic Theses and Dissertations, Auburn University, Alabama.
-
Demirel, B. (2023). Determination of solid biofuel properties of hazelnut husk briquettes obtained at different compaction pressures. Biomass Conversion and Biorefinery, 13 (14), 13267-13278. https://doi.org/10.1007/s13399-023-04431-2
-
Demirel, B. (2024). Development of a newly designed hydraulic type briquetting machine used in briquetting of apricot (Prunus armeniaca L.) plant residues at different compaction pressures. Polish Journal of Environmental Studies, 33 (1). https://doi.org/10.15244/pjoes/171981
-
Demirel, B., & Gürdil, G. (2022). Physical-mechanical parameters of hazelnut husk bio-briquettes produced by a horizontal pressing briquetting machine. Black Sea Journal of Agriculture, 5 (4), 476-480. https://doi.org/10.47115/bsagriculture.1169764
-
Demirel, C., Gürdil, G. A. K., Kabutey, A., & Herak, D. (2020). Effects of forces, particle sizes, and moisture contents on mechanical behaviour of densified briquettes from ground sunflower stalks and hazelnut husks. Energies, 13 (10), 2542. https://doi.org/10.3390/en13102542
-
Develi, H. C., Aybek, A., & Üçok, S. (2021). Antep fıstığı kabuğu ve zeytin küspesinden biyoyakıt amaçlı pelet elde edilmesi. Tekirdağ Ziraat Fakültesi Dergisi, 18 (4), 689-701. https://doi.org/10.33462/jotaf.891249
-
Dok, M., Adıyaman, C., Erbil, E., Hatipoğlu, H., Çelik, A., Aksoy, M., & Acar, M. (2021). Şanlıurfa şartlarında ikinci ürün olarak yetiştirilen bazı tatlı sorgum [Sorghum bicolor (L.) Moench] çeşitlerinin saplarından elde edilen peletlerin yakıt özelliklerinin belirlenmesi. Mustafa Kemal Üniversitesi Tarım Bilimleri Dergisi, 26 (3), 709-719. https://doi.org/10.37908/mkutbd.974979
-
Filbakk, T., Skjevrak, G., Høibø, O., Dibdiakova, J., & Jirjis, R. (2011). The influence of storage and drying methods for Scots pine raw material on mechanical pellet properties and production parameters. Fuel Processing Technology, 92 (5), 871-878. https://doi.org/10.1016/j.fuproc.2010.12.001
-
Gürdil, G. (2020). Environmental impact of bio-briquettes produced from agricultural residues concerning to CO2 emissions. Mustafa Kemal Üniversitesi Tarım Bilimleri Dergisi, 25 (2), 217-224. https://doi.org/10.37908/mkutbd.735750
-
Gürdil, G. A. K., Kabutey, A., Selvi, K. Ç., Mizera, Č., Herák, D., & Fraňková, A. (2020). Evaluation of postharvest processing of hazelnut kernel oil extraction using uniaxial pressure and organic solvent. Processes, 8 (8), 957. https://doi.org/10.3390/pr8080957
-
Ibitoye, S. E., Jen, T. C., Mahamood, R. M., & Akinlabi, E. T. (2021). Densification of agro-residues for sustainable energy generation: an overview. Bioresources and Bioprocessing, 8 (1), 75. https://doi.org/10.1186/s40643-021-00427-w
-
Kaliyan, N., & Morey, R. V. (2009). Factors affecting strength and durability of densified biomass products. Biomass and bioenergy, 33 (3), 337-359. https://doi.org/10.1016/j.biombioe.2008.08.005
-
Karunanithy, C., Wang, Y., Muthukumarappan, K., & Pugalendhi, S. (2012). Physiochemical characterization of briquettes made from different feedstocks. Biotechnology research international, 2012(1), 165202. https://doi.org/10.1155/2012/165202
-
Mahmut, D. O. K., ÇELİK, A. E., AKSOY, M., & YÜCEL, C. (2021). Çukurova koşullarında yetiştirilen tatlı sorgum posasından elde edilen peletlerin yanma özelliklerinin belirlenmesi. ISPEC Journal of Agricultural Sciences, 5 (4), 820-832. https://doi.org/10.46291/ISPECJASvol5iss4pp820-832
-
Obernberger, I., Brunner, T., & Bärnthaler, G. (2006). Chemical properties of solid biofuels—significance and impact. Biomass and Bioenergy, 30 (11), 973-982. https://doi.org/10.1016/j.biombioe.2006.06.011
-
Özpınar, S. (2023). Analysis of Energy Use Efficiency and Greenhouse Gas Emission in Rainfed Canola Production (Case study: Çanakkale Province, Turkey). Tekirdağ Ziraat Fakültesi Dergisi, 20 (1), 197-210. https://doi.org/10.33462/jotaf.1121863
-
Ozpinar, S. (2025). Energy flow and greenhouse gas emissions in olive production: a comparison of organic and conventional orchards. Applied Fruit Science, 67 (5), 324. https://doi.org/10.1007/s10341-025-01564-8
-
Rajmohan, K. S., Ramya, C., & Varjani, S. (2021). Trends and advances in bioenergy production and sustainable solid waste management. Energy & Environment, 32 (6), 1059-1085. https://doi.org/10.1177/0958305X1988241
-
Say, S. M., Erdem, T., Ekinci, K., Erdem, B. Ã. Z., Sehri, M., & Korkut, S. S. (2022). Drying kinetics of olive pomace-derived charcoal briquettes with energy consumption. Semina: Ciências Agrárias, 43 (4), 1805-1822. https://doi.org/10.5433/1679-0359.2022v43n4p1805
-
Stelte, W., Sanadi, A. R., Shang, L., Holm, J. K., Ahrenfeldt, J., & Henriksen, U. B. (2012). Recent developments in biomass pelletization-a review. BioResources, 7 (3), 4451-4490. https://doi.org/10.15376/biores.7.3.stelte
-
Yaz, M. (2023). Adhesive wear behavior of FeB–FeMn–C coatings produced by GTAW. Materials Testing, 65 (8), 1190-1201. https://doi.org/10.1515/mt-2023-0164
-
Yaz, M. (2024). Adhesive wear behavior and microstructure of FeCr–FeMn–FeB–C coatings. Materials Testing, 66 (1), 75-87. https://doi.org/10.1515/mt-2023-0347
-
Yıldız, Z., & Topkoç, E. (2023). Tarımsal atıklardan elde edilen biyopeletlerin bazı yakıt özelliklerinin uluslararası pelet standartları ile karşılaştırılması. Artvin Çoruh Üniversitesi Orman Fakültesi Dergisi, 24 (2), 1-9. https://doi.org/10.17474/artvinofd.1231448
-
Yılmaz, H. (2018). Mısır saplarının peletlenmesi ve pelet özelliklerinin belirlenmesi. Mediterranean Agricultural Sciences, 31 (3), 269-274. https://doi.org/10.29136/mediterranean.427730