Research Article
BibTex RIS Cite

Detection of Cadmium Genotoxicity on Fatty Acids Desaturase-2 Genes in Safflower (Carthamus tinctorius)

Year 2022, Volume: 6 Issue: 2, 99 - 117, 01.12.2022
https://doi.org/10.47947/ijnls.1129562

Abstract

Environmental pollution negatively affects the life activities of the living things of the environment and causes structural damages on the all living and inanimate things. The extent of the damage caused by human-made pollution to nature and the environment is increasing day by day. Heavy metal pollution is one of the most important causes of environmental pollution. Cadmium, which is one of the most important pollutants, is a highly toxic metal and is not used by living things, even in trace amounts. Cadmium is also a very toxic heavy metal for plants. As with other heavy metals, it triggers oxidative stress by increasing the production of reactive oxygen species in plant cells, causing DNA damage and abnormalities in DNA and RNA production. Safflower is a very important oil plant with high economic value and intensive use as a raw material in many sectors. In this study, in experimental groups prepared at different cadmium concentrations, the negative/genotoxic effects of cadmium on the mRNA expression levels of the FAD2 (FAD2-6, FAD2-7, FAD2-11) genes, which is responsible for the conversion of oleic acid to linoleic acid in different safflower varieties (Balci, Bdyas-04, Linas and Asol) has been determined by quantitative Real-Time PCR method. As a result, it has been detected that the decrease firstly in the expression of FAD2 genes at increasing cadmium concentrations in all cultivars. And also, re-increase at 160 and 320 mg L-1 which can be considered as critical points, have been accepted as an indication that the defense mechanism against stress is activated and FAD2 genes play a role in the defense against stress. In conclusion, the obtained data showed that FAD2 genes in safflower cultivars not only in the conversion of fatty acids but also play a critical role in defense against cadmium heavy metal stress.

Supporting Institution

Ankara University Scientific Research Unit

Project Number

16L0430009

Thanks

The authors gratefully acknowledge the financial support of this work by Ankara University Scientific Research Unit (Project No: 16L0430009). Also, thanks to architect Alper Kaan KALKAN, who helped design the graphics.

References

  • Ahlawat, I. P. S. (2008). Agronomy-Rabi Crops Safflower. Division of Agronomy Indian Agricultural Research Institute, 10, New Delhi, India.
  • Anonymous. 2013. https://www.agroscope.admin.ch/agroscope/en/home/topics/plantproduction /fieldcrops/kulturarten/alternative-kulturpflanzen/saflor.html (date of access: 26.06.2018).
  • Babaoglu, M. (2007). Safflower and its Cultivation. Trakya Agricultural Research Institute, Edirne.
  • Bayrak, A. 1997. Investigation of fatty acid composition of summer-winter Safflower (Carthamus tinctorius L.) cultivars and lines tested in Ankara and Şanlıurfa. Journal of Food, 22(4), 269-277.
  • Bolukbasi, E. (2021). Expression analysis of some stress-related genes induced by cadmium on tomato (Solanum lycopersicum L.) plants. Hittite Journal of Science and Engineering, 8(4), 339-345. doi.org/10.17350/HJSE19030000247
  • Bolukbasi, E. (2022). Analysis of Genetic and Epigenetic Effects of Sunflower (Helianthus annuus L.) Seedlings in Response to Copper Stress. Fresenius Environmental Bulletin, 31(4), 4596-4602.
  • Buyuk, I., Bolukbasi, E., & Aras, E. S. (2016). Expression of CtFAD2 gene for early selection in safflower oleic linoleic oil content. Journal of Animal and Plant Sciences, 26(5), 1383-1388.
  • Cao, S., Zhou, X. R., Wood, C. C., Green, A. G., Singh, S. P., Liu, L., & Liu, Q. (2013). A large and functionally diverse family of FAD2 genes in safflower (Carthamus tinctorius L.). BMC Plant Biology, 13(5), 1-18.
  • Cobbett, C., & Goldsbrough, P. B. (2002). Phytochelatins and Metallothioneins: Roles in Heavy Metal Detoxification and Homeostasis. Annual Review of Plant Biology, 53, 159-182.
  • Davis, P. H. (1975). Flora of Turkey and the East Aegeans Islands (Vol: 5), Edinburg: Edinburg University Press.
  • Dietz, K. J. (1999). Free Radicals and Reactive Oxygen Species as Mediator of Heavy Metal Toxicity in Plants, pp. 73-79, In: Prasad, M.N.V., Hagemeyer, J., (Eds), Berlin, Springer.
  • Dunnett, C. W. 1955. A multiple comparison procedure for comparing several treatments with a control. Journal of the American Statistical Association, 50, 1096-1121.
  • Feng, J., Dong, Y., Liu, W., He, Q., & Daud, M. K. (2017). Genome wide identification of membrane-bound fatty acid desaturase genes in Gossypium hirsutum and their expressions during abiotic stress. Scientific Reports, 7, 1-12. https://doi:10.1038/srep45711
  • Gautam, S., Anjani, K., & Srivastava, N. (2016). In vitro evaluation of excess copper affecting seedlings and their biochemical characteristics in Carthamus tinctorius L. (variety PBNS-12). Physiology and Molecular Biology of Plants, 22(1), 121-129.
  • Greger, M., & Bertel, G. (1992). Effects of Ca2+ and Cd2+ on the carbohydrate metabolism in sugar beet (Beta vulgaris). Journal of Experimental Botany, 43(2), 167-173.
  • Hall, J. L. (2002). Cellular mechanisms for heavy metal detoxification and tolerance. Journal of Experimental Botany, 53, 1-11.
  • Karabas, H. (2013). Ülkemiz ıslahçı çeşitlerinden Remzibey-05 Aspir (Carthamus tinctorius L.) tohumlarından üretilen biyodizelin yakıt özelliklerinin incelenmesi. Uludağ Üniversitesi Ziraat Fakültesi Dergisi, 27(1), 9-17.
  • Khodakovskaya, M., McAvoy, R., Peters, J., Wu, H., & Li, Y. (2006). Enhanced cold tolerance in transgenic tobacco expressing a chloroplast omega-3 fatty acid desaturase gene under the control of a cold-inducible promoter. Planta, 223, 1090-1100. https://doi:10.1007/s00425-005-0161-4
  • Kubista, M., Andrade, J. M., Bengtsson, M., Forootan, A., & Jonak, J. (2006). The real-time polymerase chain reaction. Molecular Aspects of Medicine, 2(3), 95-125. https://doi:10.1016/j.mam.2005.12.007
  • Li, D., Hu, B., Wang, Q., Liu, H., & Pan, F. (2015). Identification and evaluation of reference genes for accurate transcription normalization in safflower under different experimental conditions. Plos One, 10(10), 1-16. https://doi: 10.1371/journal.pone.0140218
  • Livak, J. K., & Schmittgen, D. T. (2001). Analysis of relative gene expression data using Real-Time Quantitative PCR and the 2-ΔΔCt method. Methods, 25, 402-408. https://doi:10.1006/meth.2001.1262 Maksymiec, W. (2007). Signaling responses in plants to heavy metal stress. Acta Physiologiae Plantarum, 29, 177-187.
  • Mithofer, A., Schulze, B., & Boland, W. (2004). Biotic and heavy metal stress response in plants: Evidence for Common Signals. FEBS Letters, 566, 1-5. https://doi:10.1016/j.febslet.2004.04.011
  • Moosavi, S. A., Gharineh, M. H., Afshari, R. T., & Ebrahimi, A. (2012). Effects of some heavy metals on seed germination characteristics of Canola (Brassica napus), Wheat (Triticum aestivum) and Safflower (Carthamus tinctorius) to evaluate phytoremediation potential of these crops. Journal of Agricultural Science, 4(9), 11-19.
  • Moradi, L., & Ehsanzadeh, P. (2015). Effects of Cd on photosynthesis and growth of safflower (Carthamus tinctorius L.) genotypes. Photosynthetica, 53(4), 506-518.
  • Namdjoyan, S., Khavarı-Nejad, R., & Bernard, F. (2012b). The effect of cadmium on growth and antioxidant responses in the safflower (Carthamus tinctorius L.) callus. Turkish Journal of Botany, 36, 145-152.
  • Namdjoyan, S., Namdjoyan, S., & Kermanıan H. (2012a). Induction of phytochelatin and responses of antioxidants under cadmium stress in safflower (Carthamus tinctorius) seedlings. Turkish Journal of Botany, 36, 495-502.
  • Nzengue, Y., Candeias, S. M., Sauvaigo, S., Douki, T., Favier, A., Rachidi, W., & P. Guiraud. (2011). The toxicity redox mechanisms of cadmium alone or together with copper and zinc homeostasis alteration: its redox biomarkers. Journal of Trace Elements in Medicine and Biology, 25, 171-180.
  • Okuley, J., Lightner, J., Feldmann, K., Yadav, N., & Lark, E. (1994). Arabidopsis FAD2 gene encodes the enzyme that is essential for polyunsaturated lipid synthesis. Plant Cell, 6, 147-158. https://doi:10.1105/tpc.6.1.147
  • Reddy, A. M., Kumar, S. G., Jyothsnakumari, G., Thimmanaik, S., & Sudhakar, C. (2005). Lead induced changes in antioxidant metabolism of horsegram (Macrotyloma uniflorum (Lam.) Verdc.) and bengalgram (Cicer arietinum L.). Chemosphere, 60, 97-104.
  • Rodríguez-Vargas, S., Sánchez-García, A., Martínez-Rivas, J. M., Prieto, J. A., & Randez-Gil, F. (2007). Fluidization of membrane lipids enhances the tolerance of Saccharomyces cerevisiae to freezing and salt. Applied and Environmental Microbiology, 73, 110-116. https://doi:10.1128/AEM.01360-06
  • Roscoe, J. T. (1975). Fundamental Research Statistics for The Behavioral Sciences. New York: Holt, Rinehart and Winston, Inc. 63.
  • Sahin, G., & Tasligil, N. (2016). Safflower (Carthamus tinctorius L.): An industrial plant with increasing strategical importance. Turkish Journal of Geography, 66, 51-62. https://doi:10.17211/tcd.48394
  • Singh, V., & Nimbkar, N. (2006). Safflower (Carthamus tinctorius L.). Chap. 6. In: Singh, R.J. (ed) Genetic Resource, Chromosome Engineering, and Crop Improvement, Vol 4, 167-194, New York.
  • Tang, G. Q., Novitzky, W. P., Griffin, H. C., Huber, S. C., & Dewey, R. E. (2005). Oleate desaturase enzymes of soybean: evidence of regulation through differential stability and phosphorylation. The Plant Journal, 44, 433-446. https://doi:10.1111/j.1365-313X.2005.02535.x
  • Tortopoğlu, A. İ. (2011). Benzin ve motorinde kullanılacak biyoyakıt üretimi için gerekli eşdeğer tarım arazisi miktarı. Hasad Aylık Tarım Dergisi, 27(319), 17-32.
  • Wang, H. S., Yu, C., Tang, X. F., Zhu, Z. J., & Ma, N. N. (2014). A tomato endoplasmic reticulum (ER)-type omega-3 fatty acid desaturase (LeFAD3) functions in early seedling tolerance to salinity stress. Plant Cell Reports, 33, 131-142. https://doi:10.1007/s00299-013-1517-z
  • Xue, Y., Yin, N., Chen, B., Liao, F., & Win, A. N. (2017). Molecular cloning and expression analysis of two FAD2 genes from chia (Salvia hispanica). Acta Physiologiae Plantarum, 39(4), 82-95. https://doi:10.1007/s11738-017-2390-0
  • Yang, Q., Fan, C., Guo, Z., Qin, J., & Wu, J. (2012). identification of FAD2 and FAD3 genes in Brassica napus genome and development of allele-specific markers for high oleic and low linolenic acid contents. Theoretical and Applied Genetics, 125, 715-729. https://doi:10.1007/s00122-012-1863-1
  • Yu, M. H. (2005). Environmental Toxicology: Biological and Health Effects of Pollutants. CRC Press, Boca Raton. Yuan, S., Wu, X., Liu, Z., Luo, H., & Huang, R. (2012). Abiotic stresses and phytohormones regulate expression of FAD2 gene in Arabidopsis thaliana. Journal of Integrative Agriculture, 11(1), 62-72. https://doi:10.1016/S1671-2927(12)60783-4
  • Zhang, J., Liu, H., Sun, J., Li, B., Zhu, Q., Chen, S., & Zhang, H. (2012). Arabidopsis fatty acid desaturase FAD2 is required for salt tolerance during seed germination and early seedling growth. Plos One, 7(1), 303-313. https://doi:10.1371/journal.pone.0030355
  • Zhang, M., Barg, R., Yin, M., Gueta-Dahan, Y., Leikin-Frenkel, A., Salts, Y., Shabtai, S., & Ben-Hayyim, G. (2005). Modulated fatty acid desaturation via overexpression of two distinct ω -3 desaturases differentially alters tolerance to various abiotic stresses in transgenic tobacco cells and plants. Plant Journal, 44, 361-371.
  • Zhang, Q. Y., Yu, R., Xie, L. H., Rahman, M. M., Kilaru, A., Niu, L. X., & Zhang, Y. L. (2018). Fatty acid and associated gene expression analyses of three tree peony species reveal key genes for α-linolenic acid synthesis in seeds. Frontiers in Plant Science, 9, 106-117. https://doi:10.3389/fpls.2018.00106
Year 2022, Volume: 6 Issue: 2, 99 - 117, 01.12.2022
https://doi.org/10.47947/ijnls.1129562

Abstract

Project Number

16L0430009

References

  • Ahlawat, I. P. S. (2008). Agronomy-Rabi Crops Safflower. Division of Agronomy Indian Agricultural Research Institute, 10, New Delhi, India.
  • Anonymous. 2013. https://www.agroscope.admin.ch/agroscope/en/home/topics/plantproduction /fieldcrops/kulturarten/alternative-kulturpflanzen/saflor.html (date of access: 26.06.2018).
  • Babaoglu, M. (2007). Safflower and its Cultivation. Trakya Agricultural Research Institute, Edirne.
  • Bayrak, A. 1997. Investigation of fatty acid composition of summer-winter Safflower (Carthamus tinctorius L.) cultivars and lines tested in Ankara and Şanlıurfa. Journal of Food, 22(4), 269-277.
  • Bolukbasi, E. (2021). Expression analysis of some stress-related genes induced by cadmium on tomato (Solanum lycopersicum L.) plants. Hittite Journal of Science and Engineering, 8(4), 339-345. doi.org/10.17350/HJSE19030000247
  • Bolukbasi, E. (2022). Analysis of Genetic and Epigenetic Effects of Sunflower (Helianthus annuus L.) Seedlings in Response to Copper Stress. Fresenius Environmental Bulletin, 31(4), 4596-4602.
  • Buyuk, I., Bolukbasi, E., & Aras, E. S. (2016). Expression of CtFAD2 gene for early selection in safflower oleic linoleic oil content. Journal of Animal and Plant Sciences, 26(5), 1383-1388.
  • Cao, S., Zhou, X. R., Wood, C. C., Green, A. G., Singh, S. P., Liu, L., & Liu, Q. (2013). A large and functionally diverse family of FAD2 genes in safflower (Carthamus tinctorius L.). BMC Plant Biology, 13(5), 1-18.
  • Cobbett, C., & Goldsbrough, P. B. (2002). Phytochelatins and Metallothioneins: Roles in Heavy Metal Detoxification and Homeostasis. Annual Review of Plant Biology, 53, 159-182.
  • Davis, P. H. (1975). Flora of Turkey and the East Aegeans Islands (Vol: 5), Edinburg: Edinburg University Press.
  • Dietz, K. J. (1999). Free Radicals and Reactive Oxygen Species as Mediator of Heavy Metal Toxicity in Plants, pp. 73-79, In: Prasad, M.N.V., Hagemeyer, J., (Eds), Berlin, Springer.
  • Dunnett, C. W. 1955. A multiple comparison procedure for comparing several treatments with a control. Journal of the American Statistical Association, 50, 1096-1121.
  • Feng, J., Dong, Y., Liu, W., He, Q., & Daud, M. K. (2017). Genome wide identification of membrane-bound fatty acid desaturase genes in Gossypium hirsutum and their expressions during abiotic stress. Scientific Reports, 7, 1-12. https://doi:10.1038/srep45711
  • Gautam, S., Anjani, K., & Srivastava, N. (2016). In vitro evaluation of excess copper affecting seedlings and their biochemical characteristics in Carthamus tinctorius L. (variety PBNS-12). Physiology and Molecular Biology of Plants, 22(1), 121-129.
  • Greger, M., & Bertel, G. (1992). Effects of Ca2+ and Cd2+ on the carbohydrate metabolism in sugar beet (Beta vulgaris). Journal of Experimental Botany, 43(2), 167-173.
  • Hall, J. L. (2002). Cellular mechanisms for heavy metal detoxification and tolerance. Journal of Experimental Botany, 53, 1-11.
  • Karabas, H. (2013). Ülkemiz ıslahçı çeşitlerinden Remzibey-05 Aspir (Carthamus tinctorius L.) tohumlarından üretilen biyodizelin yakıt özelliklerinin incelenmesi. Uludağ Üniversitesi Ziraat Fakültesi Dergisi, 27(1), 9-17.
  • Khodakovskaya, M., McAvoy, R., Peters, J., Wu, H., & Li, Y. (2006). Enhanced cold tolerance in transgenic tobacco expressing a chloroplast omega-3 fatty acid desaturase gene under the control of a cold-inducible promoter. Planta, 223, 1090-1100. https://doi:10.1007/s00425-005-0161-4
  • Kubista, M., Andrade, J. M., Bengtsson, M., Forootan, A., & Jonak, J. (2006). The real-time polymerase chain reaction. Molecular Aspects of Medicine, 2(3), 95-125. https://doi:10.1016/j.mam.2005.12.007
  • Li, D., Hu, B., Wang, Q., Liu, H., & Pan, F. (2015). Identification and evaluation of reference genes for accurate transcription normalization in safflower under different experimental conditions. Plos One, 10(10), 1-16. https://doi: 10.1371/journal.pone.0140218
  • Livak, J. K., & Schmittgen, D. T. (2001). Analysis of relative gene expression data using Real-Time Quantitative PCR and the 2-ΔΔCt method. Methods, 25, 402-408. https://doi:10.1006/meth.2001.1262 Maksymiec, W. (2007). Signaling responses in plants to heavy metal stress. Acta Physiologiae Plantarum, 29, 177-187.
  • Mithofer, A., Schulze, B., & Boland, W. (2004). Biotic and heavy metal stress response in plants: Evidence for Common Signals. FEBS Letters, 566, 1-5. https://doi:10.1016/j.febslet.2004.04.011
  • Moosavi, S. A., Gharineh, M. H., Afshari, R. T., & Ebrahimi, A. (2012). Effects of some heavy metals on seed germination characteristics of Canola (Brassica napus), Wheat (Triticum aestivum) and Safflower (Carthamus tinctorius) to evaluate phytoremediation potential of these crops. Journal of Agricultural Science, 4(9), 11-19.
  • Moradi, L., & Ehsanzadeh, P. (2015). Effects of Cd on photosynthesis and growth of safflower (Carthamus tinctorius L.) genotypes. Photosynthetica, 53(4), 506-518.
  • Namdjoyan, S., Khavarı-Nejad, R., & Bernard, F. (2012b). The effect of cadmium on growth and antioxidant responses in the safflower (Carthamus tinctorius L.) callus. Turkish Journal of Botany, 36, 145-152.
  • Namdjoyan, S., Namdjoyan, S., & Kermanıan H. (2012a). Induction of phytochelatin and responses of antioxidants under cadmium stress in safflower (Carthamus tinctorius) seedlings. Turkish Journal of Botany, 36, 495-502.
  • Nzengue, Y., Candeias, S. M., Sauvaigo, S., Douki, T., Favier, A., Rachidi, W., & P. Guiraud. (2011). The toxicity redox mechanisms of cadmium alone or together with copper and zinc homeostasis alteration: its redox biomarkers. Journal of Trace Elements in Medicine and Biology, 25, 171-180.
  • Okuley, J., Lightner, J., Feldmann, K., Yadav, N., & Lark, E. (1994). Arabidopsis FAD2 gene encodes the enzyme that is essential for polyunsaturated lipid synthesis. Plant Cell, 6, 147-158. https://doi:10.1105/tpc.6.1.147
  • Reddy, A. M., Kumar, S. G., Jyothsnakumari, G., Thimmanaik, S., & Sudhakar, C. (2005). Lead induced changes in antioxidant metabolism of horsegram (Macrotyloma uniflorum (Lam.) Verdc.) and bengalgram (Cicer arietinum L.). Chemosphere, 60, 97-104.
  • Rodríguez-Vargas, S., Sánchez-García, A., Martínez-Rivas, J. M., Prieto, J. A., & Randez-Gil, F. (2007). Fluidization of membrane lipids enhances the tolerance of Saccharomyces cerevisiae to freezing and salt. Applied and Environmental Microbiology, 73, 110-116. https://doi:10.1128/AEM.01360-06
  • Roscoe, J. T. (1975). Fundamental Research Statistics for The Behavioral Sciences. New York: Holt, Rinehart and Winston, Inc. 63.
  • Sahin, G., & Tasligil, N. (2016). Safflower (Carthamus tinctorius L.): An industrial plant with increasing strategical importance. Turkish Journal of Geography, 66, 51-62. https://doi:10.17211/tcd.48394
  • Singh, V., & Nimbkar, N. (2006). Safflower (Carthamus tinctorius L.). Chap. 6. In: Singh, R.J. (ed) Genetic Resource, Chromosome Engineering, and Crop Improvement, Vol 4, 167-194, New York.
  • Tang, G. Q., Novitzky, W. P., Griffin, H. C., Huber, S. C., & Dewey, R. E. (2005). Oleate desaturase enzymes of soybean: evidence of regulation through differential stability and phosphorylation. The Plant Journal, 44, 433-446. https://doi:10.1111/j.1365-313X.2005.02535.x
  • Tortopoğlu, A. İ. (2011). Benzin ve motorinde kullanılacak biyoyakıt üretimi için gerekli eşdeğer tarım arazisi miktarı. Hasad Aylık Tarım Dergisi, 27(319), 17-32.
  • Wang, H. S., Yu, C., Tang, X. F., Zhu, Z. J., & Ma, N. N. (2014). A tomato endoplasmic reticulum (ER)-type omega-3 fatty acid desaturase (LeFAD3) functions in early seedling tolerance to salinity stress. Plant Cell Reports, 33, 131-142. https://doi:10.1007/s00299-013-1517-z
  • Xue, Y., Yin, N., Chen, B., Liao, F., & Win, A. N. (2017). Molecular cloning and expression analysis of two FAD2 genes from chia (Salvia hispanica). Acta Physiologiae Plantarum, 39(4), 82-95. https://doi:10.1007/s11738-017-2390-0
  • Yang, Q., Fan, C., Guo, Z., Qin, J., & Wu, J. (2012). identification of FAD2 and FAD3 genes in Brassica napus genome and development of allele-specific markers for high oleic and low linolenic acid contents. Theoretical and Applied Genetics, 125, 715-729. https://doi:10.1007/s00122-012-1863-1
  • Yu, M. H. (2005). Environmental Toxicology: Biological and Health Effects of Pollutants. CRC Press, Boca Raton. Yuan, S., Wu, X., Liu, Z., Luo, H., & Huang, R. (2012). Abiotic stresses and phytohormones regulate expression of FAD2 gene in Arabidopsis thaliana. Journal of Integrative Agriculture, 11(1), 62-72. https://doi:10.1016/S1671-2927(12)60783-4
  • Zhang, J., Liu, H., Sun, J., Li, B., Zhu, Q., Chen, S., & Zhang, H. (2012). Arabidopsis fatty acid desaturase FAD2 is required for salt tolerance during seed germination and early seedling growth. Plos One, 7(1), 303-313. https://doi:10.1371/journal.pone.0030355
  • Zhang, M., Barg, R., Yin, M., Gueta-Dahan, Y., Leikin-Frenkel, A., Salts, Y., Shabtai, S., & Ben-Hayyim, G. (2005). Modulated fatty acid desaturation via overexpression of two distinct ω -3 desaturases differentially alters tolerance to various abiotic stresses in transgenic tobacco cells and plants. Plant Journal, 44, 361-371.
  • Zhang, Q. Y., Yu, R., Xie, L. H., Rahman, M. M., Kilaru, A., Niu, L. X., & Zhang, Y. L. (2018). Fatty acid and associated gene expression analyses of three tree peony species reveal key genes for α-linolenic acid synthesis in seeds. Frontiers in Plant Science, 9, 106-117. https://doi:10.3389/fpls.2018.00106
There are 42 citations in total.

Details

Primary Language English
Subjects Structural Biology
Journal Section Research articles
Authors

Ekrem Bölükbaşı 0000-0003-3828-1226

Sumer Aras 0000-0002-6597-1508

Project Number 16L0430009
Early Pub Date July 27, 2022
Publication Date December 1, 2022
Submission Date June 12, 2022
Acceptance Date July 1, 2022
Published in Issue Year 2022 Volume: 6 Issue: 2

Cite

APA Bölükbaşı, E., & Aras, S. (2022). Detection of Cadmium Genotoxicity on Fatty Acids Desaturase-2 Genes in Safflower (Carthamus tinctorius). International Journal of Nature and Life Sciences, 6(2), 99-117. https://doi.org/10.47947/ijnls.1129562